Structural Basis of the Sensor-Synthase Interaction in Autoinduction of the Quorum Sensing Signal DSF Biosynthesis

被引:42
作者
Cheng, Zhihong [1 ]
He, Ya-Wen [1 ]
Lim, Siew Choo [1 ,2 ]
Qamra, Rohini [1 ]
Walsh, Martin A. [3 ]
Zhang, Lian-Hui [1 ,4 ]
Song, Haiwei [1 ,2 ,4 ]
机构
[1] Inst Mol & Cell Biol, Proteos 138673, Singapore
[2] Nanyang Technol Univ, Sch Biol Sci, Singapore 637551, Singapore
[3] ESRF, CRG BM14, MRC France, F-38043 Grenoble, France
[4] Natl Univ Singapore, Dept Biol Sci, Singapore 117543, Singapore
关键词
ENOYL-COA HYDRATASE; CRYSTAL-STRUCTURE; XANTHOMONAS-CAMPESTRIS; RESPONSE REGULATOR; CROTONASE SUPERFAMILY; RECEIVER DOMAIN; BINDING; PROTEIN; PATHOGENICITY; MECHANISMS;
D O I
10.1016/j.str.2010.06.011
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The diffusible signal factor (DSF)-dependent quorum sensing (QS) system adopts a novel protein-protein interaction mechanism to autoregulate the production of signal DSF. Here, we present the crystal structures of DSF synthase RpfF and its complex with the REC domain of sensor protein RpfC. RpfF is structurally similarity to the members of the crotonase superfamily and contains an N-terminal alpha/beta spiral core domain and a C-terminal alpha-helical region. Further structural and mutational analysis identified two catalytic glutamate residues, which is the conserved feature of the enoyl-CoA hydratases/dehydratases. A putative substrate-binding pocket was unveiled and the key roles of the residues implicated in substrate binding were verified by mutational analysis. The binding of the REC domain may lock RpfF in an inactive conformation by blocking the entrance of substrate binding pocket, thereby negatively regulating DSF production. These findings provide a structural model for the RpfC-RpfF interaction-mediated QS autoinduction mechanism.
引用
收藏
页码:1199 / 1209
页数:11
相关论文
共 43 条
[31]   Refinement of macromolecular structures by the maximum-likelihood method [J].
Murshudov, GN ;
Vagin, AA ;
Dodson, EJ .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 1997, 53 :240-255
[32]   The crystal structure of Δ3-Δ2-enoyl-CoA isomerase [J].
Mursula, AM ;
van Aalten, DMF ;
Hiltunen, JK ;
Wierenga, RK .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 309 (04) :845-853
[33]   The 1.3 Å crystal structure of human mitochondrial Δ3-Δ2-enoyl-CoA isomerase shows a novel mode of binding for the fatty acyl group [J].
Partanen, ST ;
Novikov, DK ;
Popov, AN ;
Mursula, AM ;
Hiltunen, JK ;
Wierenga, RK .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 342 (04) :1197-1208
[34]   A graphical user interface to the CCP4 program suite [J].
Potterton, E ;
Briggs, P ;
Turkenburg, M ;
Dodson, E .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2003, 59 :1131-1137
[35]  
Sheldrick GM, 2015, ACTA CRYSTALLOGR C, V71, P3, DOI [10.1107/S2053229614024218, 10.1107/S2053273314026370, 10.1107/S0108767307043930]
[36]   A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris [J].
Slater, H ;
Alvarez-Morales, A ;
Barber, CE ;
Daniels, MJ ;
Dow, JM .
MOLECULAR MICROBIOLOGY, 2000, 38 (05) :986-1003
[37]   Three-dimensional crystal structure of the transcription factor PhoB receiver domain [J].
Solà, M ;
Gomis-Rüth, FX ;
Serrano, L ;
González, A ;
Coll, M .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 285 (02) :675-687
[38]   3-DIMENSIONAL STRUCTURE OF CHEY, THE RESPONSE REGULATOR OF BACTERIAL CHEMOTAXIS [J].
STOCK, AM ;
MOTTONEN, JM ;
STOCK, JB ;
SCHUTT, CE .
NATURE, 1989, 337 (6209) :745-749
[39]   3-DIMENSIONAL SOLUTION STRUCTURE OF THE N-TERMINAL RECEIVER DOMAIN OF NTRC [J].
VOLKMAN, BF ;
NOHAILE, MJ ;
AMY, NK ;
KUSTU, S ;
WEMMER, DE .
BIOCHEMISTRY, 1995, 34 (04) :1413-1424
[40]  
VON BODMAN SB, 2003, ANNU REV PHYTOPATHOL, V41, P455