A remark on formal KMS states in deformation quantization

被引:22
作者
Bordemann, M [1 ]
Romer, H [1 ]
Waldmann, S [1 ]
机构
[1] Univ Freiburg, Fak Phys, D-79104 Freiburg, Germany
关键词
deformation quantization; KMS states;
D O I
10.1023/A:1007481019610
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Within the framework of deformation quantization, we define formal KMS states on the deformed algebra of power series of functions with compact support in phase space as C[[lambda]]-linear functionals obeying a formal variant of the usual KMS condition known in the theory of C*-algebras. We show that for each temperature KMS states always exist and are up to a normalization equal to the trace of the argument multiplied by a formal analogue of the usual Boltzmann factor, a certain formal star exponential.
引用
收藏
页码:49 / 61
页数:13
相关论文
共 28 条
[1]   STABILITY AND EQUILIBRIUM STATES OF INFINITE CLASSICAL SYSTEMS [J].
AIZENMAN, M ;
GALLAVOTTI, G ;
GOLDSTEIN, S ;
LEBOWITZ, JL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 48 (01) :1-14
[2]   DEFORMATION-THEORY APPLIED TO QUANTIZATION AND STATISTICAL-MECHANICS [J].
BASART, H ;
FLATO, M ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
LETTERS IN MATHEMATICAL PHYSICS, 1984, 8 (06) :483-494
[3]   CONFORMAL SYMPLECTIC-GEOMETRY, DEFORMATIONS, RIGIDITY AND GEOMETRICAL (KMS) CONDITIONS [J].
BASART, H ;
LICHNEROWICZ, A .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (2-3) :167-177
[4]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[5]  
Bordemann M, 1997, MATH PHYS S, V20, P315
[6]  
BORDEMANN M, IN PRESS COMM MATH P
[7]  
BORDEMANN M, 1996, FRTHEP9612 U FREIB
[8]  
BORDEMANN M, 1997, QALG9707030
[9]  
BORDEMANN M, 1997, FRTHEP9710 U FREIB
[10]  
BORDEMANN M, 1997, FRTHEP9723 U FREIB