Structural basis for histone and phosphohistone binding by the GCN5 histone acetyltransferase

被引:110
作者
Clements, A
Poux, AN
Lo, WS
Pillus, L
Berger, SL
Marmorstein, R [1 ]
机构
[1] Wistar Inst Anat & Biol, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA
[3] Univ Calif San Diego, Div Biol Sci, San Diego, CA 92093 USA
关键词
D O I
10.1016/S1097-2765(03)00288-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Distinct posttranslational modifications on histones occur in specific patterns to mediate certain chromosomal events. For example, on histone H3, phosphorylation at Ser10 can enhance GCN5-mediated Lys14 acetylation to promote transcription. To gain insight into the mechanism underlying this synergism, we determined the structure of Tetrahymena GCN5 (tGCN5) and coenzyme A (CoA) bound to unmodified and Ser10-phosphorylated 19 residue histone H3 peptides (H3p19 and H3p19Pi, respectively). The tGCN5/CoA/ H3p19 structure reveals that a 12 amino acid core sequence mediates extensive contacts with the protein, providing the structural basis for substrate specificity by the GCN5/PCAF family of histone acetyltransferases. Comparison with the tGCN5/CoA/H3p19Pi structure reveals that phospho-Ser10 and Thr11 mediate significant histone-protein interactions, and nucleate additional interactions distal to the phosphorylation site. Functional studies show that histone H3 Thr11 is necessary for optimal transcription at yGcn5-dependent promoters requiring Ser10 phosphorylation. Together, these studies reveal how one histone modification can modulate another to affect distinct transcriptional signals.
引用
收藏
页码:461 / 473
页数:13
相关论文
共 48 条
[1]  
BRADBURY EM, 1992, BIOESSAYS, V14, P9
[2]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[3]   Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation [J].
Cheung, P ;
Tanner, KG ;
Cheung, WL ;
Sassone-Corsi, P ;
Denu, JM ;
Allis, CD .
MOLECULAR CELL, 2000, 5 (06) :905-915
[4]   Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation [J].
Clayton, AL ;
Rose, S ;
Barratt, MJ ;
Mahadevan, LC .
EMBO JOURNAL, 2000, 19 (14) :3714-3726
[5]   Mitotic phosphorylation of histone H3: Spatio-temporal regulation by mammalian aurora kinases [J].
Crosio, C ;
Fimia, GM ;
Loury, R ;
Kimura, M ;
Okano, Y ;
Zhou, HY ;
Sen, S ;
Allis, CD ;
Sassone-Corsi, P .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (03) :874-885
[6]   The N-terminus of histone H2B, but not that of histone H3 or its phosphorylation, is essential for chromosome condensation [J].
de la Barre, AE ;
Angelov, D ;
Molla, A ;
Dimitrov, S .
EMBO JOURNAL, 2001, 20 (22) :6383-6393
[7]   Core histone N-termini play an essential role in mitotic chromosome condensation [J].
de la Barre, AE ;
Gerson, V ;
Gout, S ;
Creaven, M ;
Allis, CD ;
Dimitrov, S .
EMBO JOURNAL, 2000, 19 (03) :379-391
[8]   Structure of the histone acetyltransferase Hat1: A paradigm for the GCN5-related N-acetyltransferase superfamily [J].
Dutnall, RN ;
Tafrov, ST ;
Sternglanz, R ;
Ramakrishnan, V .
CELL, 1998, 94 (04) :427-438
[9]   Interactions of transcriptional regulators with histones [J].
Edmondson, DG ;
Roth, SY .
METHODS-A COMPANION TO METHODS IN ENZYMOLOGY, 1998, 15 (04) :355-364
[10]   Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: Characterization of an Ada complex and the SAGA (Spt/Ada) complex [J].
Grant, PA ;
Duggan, L ;
Cote, J ;
Roberts, SM ;
Brownell, JE ;
Candau, R ;
Ohba, R ;
OwenHughes, T ;
Allis, CD ;
Winston, F ;
Berger, SL ;
Workman, JL .
GENES & DEVELOPMENT, 1997, 11 (13) :1640-1650