An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP

被引:454
作者
Wayman, Gary A. [1 ,2 ]
Davare, Monika [2 ]
Ando, Hideaki [3 ]
Fortin, Dale [2 ]
Varlamova, Olga [3 ]
Cheng, Hai-Ying M. [4 ,5 ]
Marks, Daniel
Obrietan, Karl [4 ,5 ]
Soclerling, Thomas R. [2 ]
Goodman, Richard H. [2 ]
Impey, Soren [3 ]
机构
[1] Washington State Univ, Dept Vet Anat Physiol & Pharmacol, Pullman, WA 99164 USA
[2] Oregon Hlth & Sci Univ, Vollum Inst, Portland, OR 97239 USA
[3] Oregon Hlth & Sci Univ, Oregon Stem Cell Ctr, Portland, OR 97239 USA
[4] Oregon Hlth & Sci Univ, Ctr Study Weight Regulat, Portland, OR 97239 USA
[5] Ohio State Univ, Dept Neurosci, Columbus, OH 43210 USA
关键词
cAMP response element-binding (CREB) protein; transcription; CaM kinase; actin cytoskeleton; Rac;
D O I
10.1073/pnas.0803072105
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Activity-regulated gene expression is believed to play a key role in the development and refinement of neuronal circuitry. Nevertheless, the transcriptional networks that regulate synapse growth and plasticity remain largely uncharacterized. Here, we show that microRNA 132 (miR132) is an activity-dependent rapid response gene regulated by the cAMP response element-binding (CREB) protein pathway. Introduction of miR132 into hippocampal neurons enhanced dendrite morphogenesis whereas inhibition of miR132 by 2' O-methyl RNA antagonists blocked these effects. Furthermore, neuronal activity inhibited translation of p250GAP, a miR132 target, and siRNA-mediated knockdown of p250GAP mimicked miR132-incluced dendrite growth. Experiments using dominant-interfering mutants suggested that Rac signaling is downstream of miR132 and p250GAP. We propose that the miR132-p250GAP pathway plays a key role in activity-dependent structural and functional plasticity.
引用
收藏
页码:9093 / 9098
页数:6
相关论文
共 40 条
[11]   Cloning and distribution of galanin-like peptide mRNA in the hypothalamus and pituitary of the macaque [J].
Cunningham, MJ ;
Scarlett, JM ;
Steiner, RA .
ENDOCRINOLOGY, 2002, 143 (03) :755-763
[12]   microPrimer: The biogenesis and function of microRNA [J].
Du, TT ;
Zamore, PD .
DEVELOPMENT, 2005, 132 (21) :4645-4652
[13]   IMPAIRED LONG-TERM POTENTIATION, SPATIAL-LEARNING, AND HIPPOCAMPAL DEVELOPMENT IN FYN MUTANT MICE [J].
GRANT, SGN ;
ODELL, TJ ;
KARL, KA ;
STEIN, PL ;
SORIANO, P ;
KANDEL, ER .
SCIENCE, 1992, 258 (5090) :1903-1910
[14]  
IMPREY S, 2004, CELL, V119, P1041
[15]   A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans [J].
Johnston, RJ ;
Hobert, O .
NATURE, 2003, 426 (6968) :845-849
[16]   Synaptic activity and the construction of cortical circuits [J].
Katz, LC ;
Shatz, CJ .
SCIENCE, 1996, 274 (5290) :1133-1138
[17]   Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA [J].
Klein, Matthew E. ;
Lioy, Daniel T. ;
Ma, Lin ;
Impey, Soren ;
Mandel, Gail ;
Goodman, Richard H. .
NATURE NEUROSCIENCE, 2007, 10 (12) :1513-1514
[18]   Role reversal: The regulation of neuronal gene expression by microRNAs [J].
Klein, ME ;
Impey, S ;
Goodman, RH .
CURRENT OPINION IN NEUROBIOLOGY, 2005, 15 (05) :507-513
[19]   A microRNA array reveals extensive regulation of microRNAs during brain development [J].
Krichevsky, AM ;
King, KS ;
Donahue, CP ;
Khrapko, K ;
Kosik, KS .
RNA, 2003, 9 (10) :1274-1281
[20]   MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila [J].
Li, Yan ;
Wang, Fay ;
Lee, Jin-A ;
Gao, Fen-Biao .
GENES & DEVELOPMENT, 2006, 20 (20) :2793-2805