Firing characteristics of deep layer neurons in prefrontal cortex in rats performing spatial working memory tasks

被引:251
作者
Jung, MW
Qin, YL
McNaughton, BL
Barnes, CA
机构
[1] Univ Arizona, Arizona Res Labs, Div Neural Syst Memory & Aging, Tucson, AZ 85724 USA
[2] Univ Arizona, Dept Psychol, Tucson, AZ 85724 USA
[3] Univ Arizona, Dept Physiol, Tucson, AZ 85724 USA
[4] Univ Arizona, Dept Neurol, Tucson, AZ 85724 USA
[5] Ajou Univ, Inst Med Sci, Neurosci Lab, Suwon 442749, South Korea
[6] Ajou Univ, Dept Physiol, Suwon 442749, South Korea
关键词
D O I
10.1093/cercor/8.5.437
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Single cells were recorded with 'tetrodes' in regions of the rat medial prefrontal cortex, including those which are targets of hippocampal afferents, while rats were performing three different behavioral tasks: (i) an eight-arm radial maze, spatial working memory task, (ii) a figure-eight track, delayed spatial alternation task, and (iii) a random food search task in a square chamber. Among 187 recorded units, very few exhibited any evidence of place-specific firing on any of the behavioral tasks, except to the extent that different spatial locations were related to distinct phases of the task. Furthermore, no prefrontal unit showed unambiguous spatially dependent delay activity that might mediate working memory for spatial locations. Rather, the cells exhibited diverse correlates that were generally associated with the behavioral requirements of performing the task. This included firing related to intertrial intervals, onset or end of trials, selection of specific arms on the eight-arm radial maze, delay periods, approach to or departure from goals, and selection of paths on the figure-eight track. Although a small number of cells showed similar behavioral correlates across tasks, the majority of cells showed no consistent correlate when recorded across multiple tasks. Furthermore, some units did not exhibit altered firing patterns in any of the three tasks, while others showed changes in firing that were not consistently related to specific behaviors or task components. These results are in agreement with previous lesion and behavioral studies in rats that suggest a prefrontal cortical role in encoding 'rules' (i.e. structural features) or behavioral sequences within a task but not in encoding allocentric spatial information. Given that the hippocampal projection to this cortical region is capable of undergoing LTP, our data lead to the hypothesis that the role of this projection is not to impose spatial representations upon prefrontal activity, but to provide a mechanism for learning the spatial context in which particular behaviors are appropriate.
引用
收藏
页码:437 / 450
页数:14
相关论文
共 63 条
[21]   NMDA RECEPTOR-DEPENDENT LONG-TERM POTENTIATION IN THE HIPPOCAMPAL AFFERENT FIBER SYSTEM TO THE PREFRONTAL CORTEX IN THE RAT [J].
JAY, TM ;
BURETTE, F ;
LAROCHE, S .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1995, 7 (02) :247-250
[22]   SPATIAL SELECTIVITY OF UNIT-ACTIVITY IN THE HIPPOCAMPAL GRANULAR LAYER [J].
JUNG, MW ;
MCNAUGHTON, BL .
HIPPOCAMPUS, 1993, 3 (02) :165-182
[23]  
JUNG MW, 1994, J NEUROSCI, V14, P7347
[24]   DISSOCIATION OF ITEM AND ORDER SPATIAL MEMORY IN RATS FOLLOWING MEDIAL PREFRONTAL CORTEX LESIONS [J].
KESNER, RP ;
HOLBROOK, T .
NEUROPSYCHOLOGIA, 1987, 25 (04) :653-664
[25]   PLACE CELLS, HEAD DIRECTION CELLS, AND THE LEARNING OF LANDMARK STABILITY [J].
KNIERIM, JJ ;
KUDRIMOTI, HS ;
MCNAUGHTON, BL .
JOURNAL OF NEUROSCIENCE, 1995, 15 (03) :1648-1659
[26]   DISSOCIATION OF THE MEDIAL PREFRONTAL, POSTERIOR PARIETAL, AND POSTERIOR TEMPORAL CORTEX FOR SPATIAL NAVIGATION AND RECOGNITION MEMORY IN THE RAT [J].
KOLB, B ;
BUHRMANN, K ;
MCDONALD, R ;
SUTHERLAND, RJ .
CEREBRAL CORTEX, 1994, 4 (06) :664-680
[27]   DOUBLE DISSOCIATION OF SPATIAL IMPAIRMENTS AND PERSEVERATION FOLLOWING SELECTIVE PREFRONTAL LESIONS IN RATS [J].
KOLB, B ;
NONNEMAN, AJ ;
SINGH, RK .
JOURNAL OF COMPARATIVE AND PHYSIOLOGICAL PSYCHOLOGY, 1974, 87 (04) :772-780
[28]  
KOLB B, 1990, PROG BRAIN RES, V85, P501, DOI DOI 10.1016/S0079-6123(08)62697-7
[29]   PREFRONTAL CORTICAL UNIT ACTIVITY AND DELAYED ALTERNATION PERFORMANCE IN MONKEYS [J].
KUBOTA, K ;
NIKI, H .
JOURNAL OF NEUROPHYSIOLOGY, 1971, 34 (03) :337-&
[30]   LONG-TERM POTENTIATION IN THE PREFRONTAL CORTEX FOLLOWING STIMULATION OF THE HIPPOCAMPAL CA1/SUBICULAR REGION [J].
LAROCHE, S ;
JAY, TM ;
THIERRY, AM .
NEUROSCIENCE LETTERS, 1990, 114 (02) :184-190