Cell-type-specific nuclei purification from whole animals for genome-wide expression and chromatin profiling

被引:90
作者
Steiner, Florian A. [1 ]
Talbert, Paul B. [1 ]
Kasinathan, Sivakanthan [1 ]
Deal, Roger B. [1 ]
Henikoff, Steven [1 ,2 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Div Basic Sci, Seattle, WA 98109 USA
[2] Fred Hutchinson Canc Res Ctr, Howard Hughes Med Inst, Seattle, WA 98109 USA
基金
瑞士国家科学基金会; 美国国家卫生研究院;
关键词
GENE-EXPRESSION; CAENORHABDITIS-ELEGANS; NUCLEOSOME OCCUPANCY; TWIST GENE; DYNAMICS; PROTEIN; DISCOVERY; PATTERNS; SEQUENCE; NEMATODE;
D O I
10.1101/gr.131748.111
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An understanding of developmental processes requires knowledge of transcriptional and epigenetic landscapes at the level of tissues and ultimately individual cells. However, obtaining tissue- or cell-type-specific expression and chromatin profiles for animals has been challenging. Here we describe a method for purifying nuclei from specific cell types of animal models that allows simultaneous determination of both expression and chromatin profiles. The method is based on in vivo biotin-labeling of the nuclear envelope and subsequent affinity purification of nuclei. We describe the use of the method to isolate nuclei from muscle of adult Caenorhabditis elegans and from mesoderm of Drosophila melanogaster embryos. As a case study, we determined expression and nucleosome occupancy profiles for affinity-purified nuclei from C elegans muscle. We identified hundreds of genes that are specifically expressed in muscle tissues and found that these genes are depleted of nucleosomes at promoters and gene bodies in muscle relative to other tissues. This method should be universally applicable to all model systems that allow transgenesis and will make it possible to determine epigenetic and expression profiles of different tissues and cell types.
引用
收藏
页码:766 / 777
页数:12
相关论文
共 51 条
[1]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[2]   Chromatin signatures of pluripotent cell lines [J].
Azuara, V ;
Perry, P ;
Sauer, S ;
Spivakov, M ;
Jorgensen, HF ;
John, RM ;
Gouti, M ;
Casanova, M ;
Warnes, G ;
Merkenschlager, M ;
Fisher, AG .
NATURE CELL BIOLOGY, 2006, 8 (05) :532-U189
[3]   A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes [J].
Baldi, P ;
Long, AD .
BIOINFORMATICS, 2001, 17 (06) :509-519
[4]   Comparison of the contributions of the nuclear and cytoplasmic compartments to global gene expression in human cells [J].
Barthelson, Roger A. ;
Lambert, Georgina M. ;
Vanier, Cheryl ;
Lynch, Ronald M. ;
Galbraith, David W. .
BMC GENOMICS, 2007, 8 (1)
[5]   Synthetic lethal analysis of Caenorhabditis elegans posterior embryonic patterning genes identifies conserved genetic interactions -: art. no. R45 [J].
Baugh, LR ;
Wen, JC ;
Hill, AA ;
Slonim, DK ;
Brown, EL ;
Hunter, CP .
GENOME BIOLOGY, 2005, 6 (05)
[6]   Global nucleosome occupancy in yeast [J].
Bernstein, BE ;
Liu, CL ;
Humphrey, EL ;
Perlstein, EO ;
Schreiber, SL .
GENOME BIOLOGY, 2004, 5 (09)
[7]  
BRAND AH, 1993, DEVELOPMENT, V118, P401
[8]   Baculovirus-encoded protein expression for epigenomic profiling in Drosophila cells [J].
Bryson, Terri D. ;
Weber, Christopher M. ;
Henikoff, Steven .
FLY, 2010, 4 (03) :258-265
[9]  
Burgemeister R, 2011, METHODS MOL BIOL, V724, P105, DOI 10.1007/978-1-61779-055-3_7
[10]   GENECODIS: a web-based tool for finding significant concurrent annotations in gene lists [J].
Carmona-Saez, Pedro ;
Chagoyen, Monica ;
Tirado, Francisco ;
Carazo, Jose M. ;
Pascual-Montano, Alberto .
GENOME BIOLOGY, 2007, 8 (01)