Enhanced High-Rate Performance of Li4Ti5O12 Nanoparticles for Rechargeable Li-Ion Batteries

被引:76
作者
Lim, Jinsub [1 ]
Choi, Eunseok [1 ]
Mathew, Vinod [1 ]
Kim, Donghan [2 ]
Ahn, Docheon [3 ]
Gim, Jihyeon [1 ]
Kang, Sun-Ho [2 ]
Kim, Jaekook [1 ]
机构
[1] Chonnam Natl Univ WCU, Dept Mat Sci & Engn, Bukgu 500757, Gwangju, South Korea
[2] Argonne Natl Lab, Chem Sci & Engn Div, Electrochem Energy Storage Dept, Argonne, IL 60439 USA
[3] Pohang Accelerator Lab, Beamline Res Div, Pohang 790784, South Korea
关键词
ANODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; NANOCRYSTALLINE LI4TI5O12; TITANIUM-SPINEL; LITHIUM; INSERTION; ELECTRODES; COMPOSITE; ABSORPTION; NANOWIRES;
D O I
10.1149/1.3527983
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Li4Ti5O12 was successfully synthesized by solvothermal techniques using cost-effective precursors in polyol medium. The x-ray diffraction (XRD) pattern of the sample (LTO-500) was clearly indexed to the spinel shaped Li4Ti5O12 and in order to accurately determine the lattice parameters, synchrotron powder XRD pattern was fitted by the whole-pattern profile matching method using the model space group, Fd (3) over barm. The particle size, morphology, and crystallinity of LTO-500 were identified using field-emission scanning electron microscopy and transmission electron microscopy. The electrochemical performance of the sample revealed fairly high initial discharge/charge specific capacities of 230 and 179 mAh/g, respectively, and exhibited highly improved rate performances at C-rates as high as 30 and 60 C, when compared to Li4Ti5O12 by the solid-state reaction method. This was attributed to the achievement of small particle sizes in nanoscale dimensions, a reasonably narrow particle size distribution and, hence, shorter diffusion paths combined with larger contact area at the electrode/electrolyte interface. (C) 2011 The Electrochemical Society. [DOI:10.1149/1.3527983] All rights reserved.
引用
收藏
页码:A275 / A280
页数:6
相关论文
共 55 条
[1]   Chemical and electrochemical Li-insertion into the Li4Ti5O12 spinel [J].
Aldon, L ;
Kubiak, P ;
Womes, M ;
Jumas, JC ;
Olivier-Fourcade, J ;
Tirado, JL ;
Corredor, JI ;
Vicente, CP .
CHEMISTRY OF MATERIALS, 2004, 16 (26) :5721-5725
[2]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[3]   Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn2-xO4-zFz solid solution [J].
Amatucci, GG ;
Pereira, N ;
Zheng, T ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (02) :A171-A182
[4]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[5]   TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
Bruce, PG .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (17) :2286-2288
[6]   Electrochemical behavior of a lithium titanium spinel compound synthesized via a sol-gel process [J].
Bach, S ;
Pereira-Ramos, JP ;
Baffier, N .
JOURNAL OF MATERIALS CHEMISTRY, 1998, 8 (01) :251-253
[7]   Influence of composite LiCl-KCl molten salt on microstructure and electrochemical performance of spinel Li4Ti5O12 [J].
Bai, Ying ;
Wang, Feng ;
Wu, Feng ;
Wu, Chuan ;
Bao, Li-ying .
ELECTROCHIMICA ACTA, 2008, 54 (02) :322-327
[8]   Cations distribution and valence states in Mn-substituted Li4Ti5O12 structure [J].
Capsoni, Doretta ;
Bini, Marcella ;
Massarotti, Vincenzo ;
Mustarelli, Piercarlo ;
Chiodelli, Gaetano ;
Azzoni, Carlo B. ;
Mozzati, Maria C. ;
Linati, Laura ;
Ferrari, Stefania .
CHEMISTRY OF MATERIALS, 2008, 20 (13) :4291-4298
[9]   STRUCTURE AND ELECTROCHEMISTRY OF THE SPINEL OXIDES LITI2O4 AND LI4/3TI5/3O4 [J].
COLBOW, KM ;
DAHN, JR ;
HAERING, RR .
JOURNAL OF POWER SOURCES, 1989, 26 (3-4) :397-402
[10]   Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries [J].
Cui, Li-Feng ;
Yang, Yuan ;
Hsu, Ching-Mei ;
Cui, Yi .
NANO LETTERS, 2009, 9 (09) :3370-3374