Facile fabrication of reticular polypyrrole-silicon core-shell nanofibers for high performance lithium storage

被引:54
作者
Du, Zhijia [1 ]
Zhang, Shichao [1 ]
Liu, Yi [1 ]
Zhao, Jianfeng [1 ]
Lin, Ruoxu [1 ]
Jiang, Tao [1 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
LI-ION BATTERIES; ANODE MATERIAL; AMORPHOUS-SILICON; SI; NANOWIRES; COMPOSITES; CHALLENGES; ELECTRODES; ARRAY;
D O I
10.1039/c2jm31419c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon is the most promising anode material to replace graphite in lithium ion batteries due to its high theoretical capacity of 4200 mAh g(-1). However, the enormous volume expansion of bulk Si during the lithiation process results in severe electrode degradation and capacity decay. Extensive research effort has been devoted to fabricating nanostructured Si-based materials to improve the capacity cycling stability. Herein, a facile two-step approach is developed for the fabrication of novel three-dimensional (3D) nanoarchitectures composed of polypyrrole-silicon (PPy-Si) core-shell nanofibers. Electropolymerized PPy nanofibers are utilized as the flexible substrate for the deposition of Si thin films via a chemical vapor deposition (CVD) procedure. In this well-designed configuration, the PPy nanofibers are favorable for facile charge delivery and gathering, while the porosity of the electrode can efficiently cushion the volume expansion of Si. The electrode delivers a high reversible capacity above 2800 mAh g(-1) with appealing cycling stability (similar to 91% capacity retained after 100 cycles). The rate capability of the electrode is also remarkable with a high capacity and stability. It is revealed that the reticular nanofibers' morphology is well preserved after repeated lithium insertion and extraction, which certainly indicates the superiority of our electrode design. This fabrication approach can also be extended to other electrodes for electrochemical energy conversion and storage.
引用
收藏
页码:11636 / 11641
页数:6
相关论文
共 29 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   ALL-SOLID LITHIUM ELECTRODES WITH MIXED-CONDUCTOR MATRIX [J].
BOUKAMP, BA ;
LESH, GC ;
HUGGINS, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (04) :725-729
[3]   Amorphous silicon as a possible anode material for Li-ion batteries [J].
Bourderau, S ;
Brousse, T ;
Schleich, DM .
JOURNAL OF POWER SOURCES, 1999, 81 :233-236
[4]   Nano-silicon/polyaniline composite for lithium storage [J].
Cai, Jie-Jian ;
Zuo, Peng-Jian ;
Cheng, Xin-Qun ;
Xu, Yu-Hong ;
Yin, Ge-Ping .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (11) :1572-1575
[5]   Cu-Si Nanocable Arrays as High-Rate Anode Materials for Lithium-Ion Batteries [J].
Cao, Fei-Fei ;
Deng, Jun-Wen ;
Xin, Sen ;
Ji, Heng-Xing ;
Schmidt, Oliver G. ;
Wan, Li-Jun ;
Guo, Yu-Guo .
ADVANCED MATERIALS, 2011, 23 (38) :4415-+
[6]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[7]   Stepwise Nanopore Evolution in One-Dimensional Nanostructures [J].
Choi, Jang Wook ;
McDonough, James ;
Jeong, Sangmoo ;
Yoo, Jee Soo ;
Chan, Candace K. ;
Cui, Yi .
NANO LETTERS, 2010, 10 (04) :1409-1413
[8]   Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries [J].
Cui, Li-Feng ;
Yang, Yuan ;
Hsu, Ching-Mei ;
Cui, Yi .
NANO LETTERS, 2009, 9 (09) :3370-3374
[9]   Mixed silicon-graphite composites as anode material for lithium ion batteries influence of preparation conditions on the properties of the material [J].
Dimov, N ;
Kugino, S ;
Yoshio, A .
JOURNAL OF POWER SOURCES, 2004, 136 (01) :108-114
[10]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603