The trap-limited diffusivity of electrons in nanoporous semiconductor networks permeated with a conductive phase

被引:42
作者
Bisquert, J [1 ]
Zaban, A
机构
[1] Univ Jaume 1, Dept Ciencies Expt, Castello 12080, Spain
[2] Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2003年 / 77卷 / 3-4期
关键词
D O I
10.1007/s00339-002-1479-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The transport of photogenerated electrons in nanocrystalline semiconductor networks permeated with a conducting phase is studied, with a particular emphasis on dye-sensitized nanoporous TiO2 solar cells. We extend the classical approach to the trap-limited mobility according to specific features of the nanoporous configuration: electron transport by diffusion, the capacitive behavior of the nanoporous film and the possible bandshifts due to the charging of surface states. We show that the trap-limited diffusivity, as measured by small-signal techniques, is proportional to the ratio of the conduction-band capacitance and the trap capacitance. These capacitances are defined in terms of a pseudopotential related to the chemical energy of the free electrons, in order to account for possible band unpinning. Several specific distributions of bandgap states are investigated. The dependence of the trap capacitance on the number of free electrons takes the general form C-trap=An(1-a), where 0less than or equal toaless than or equal to1 depends on the distribution of the traps. The trap-limited diffusivity depends on the number of free electrons as D-n=Bn-a, and D-n also shows a power-law dependence with the light intensity. We describe the correlation of the electron conductivity with the photovoltage in the solar cell and the photon irradiation intensity.
引用
收藏
页码:507 / 514
页数:8
相关论文
共 48 条
  • [1] HOPPING TRANSPORT ON A FRACTAL - AC CONDUCTIVITY OF POROUS SILICON
    BENCHORIN, M
    MOLLER, F
    KOCH, F
    SCHIRMACHER, W
    EBERHARD, M
    [J]. PHYSICAL REVIEW B, 1995, 51 (04): : 2199 - 2213
  • [2] Bisquert J, 2002, J PHYS CHEM B, V106, P325, DOI [10.1021/jp011941g, 10.1021/jp01194lg]
  • [3] Analysis of the mechanisms of electron recombination in nanoporous TiO2 dye-sensitized solar cells.: Nonequilibrium steady-state statistics and interfacial electron transfer via surface states
    Bisquert, J
    Zaban, A
    Salvador, P
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (34) : 8774 - 8782
  • [4] Modelling the electric potential distribution in the dark in nanoporous semiconductor electrodes
    Bisquert, J
    Garcia-Belmonte, G
    Fabregat-Santiago, F
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 1999, 3 (06) : 337 - 347
  • [5] Doubling exponent models for the analysis of porous film electrodes by impedance.: Relaxation of TiO2 nanoporous in aqueous solution
    Bisquert, J
    Garcia-Belmonte, G
    Fabregat-Santiago, F
    Ferriols, NS
    Bogdanoff, P
    Pereira, EC
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (10) : 2287 - 2298
  • [6] Spectroelectrochemical investigation of surface states in nanostructured TiO2 electrodes
    Boschloo, G
    Fitzmaurice, D
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (12): : 2228 - 2231
  • [7] Electron trapping in porphyrin-sensitized porous nanocrystalline TiO2 electrodes
    Boschloo, GK
    Goossens, A
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (50) : 19489 - 19494
  • [8] Bube R.H., 1992, Photoelectronic Properties of Semiconductors
  • [9] ELECTRICAL AND OPTICAL-PROPERTIES OF POROUS NANOCRYSTALLINE TIO2 FILMS
    CAO, F
    OSKAM, G
    SEARSON, PC
    STIPKALA, JM
    HEIMER, TA
    FARZAD, F
    MEYER, GJ
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (31) : 11974 - 11980
  • [10] Electron transport in porous nanocrystalline TiO2 photoelectrochemical cells
    Cao, F
    Oskam, G
    Meyer, GJ
    Searson, PC
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (42) : 17021 - 17027