2D-LDA: A statistical linear discriminant analysis for image matrix

被引:502
作者
Li, M [1 ]
Yuan, BZ [1 ]
机构
[1] Beijing Jiaotong Univ, Inst Sci Informat, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
feature extraction; image representation; linear discriminant analysis; subspace techniques; face recognition;
D O I
10.1016/j.patrec.2004.09.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an innovative algorithm named 2D-LDA, which directly extracts the proper features from image matrices based on Fisher's Linear Discriminant Analysis. We experimentally compare 2D-LDA to other feature extraction methods, such as 2D-PCA, Eigenfaces and Fisherfaces. And 2D-LDA achieves the best performance. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:527 / 532
页数:6
相关论文
共 9 条