A unique set of 11,008 onion expressed sequence tags reveals expressed sequence and genomic differences between the monocot orders Asparagales and Poales

被引:133
作者
Kuhl, JC
Cheung, F
Yuan, QP
Martin, W
Zewdie, Y
McCallum, J
Catanach, A
Rutherford, P
Sink, KC
Jenderek, M
Prince, JP
Town, CD
Havey, MJ [1 ]
机构
[1] Univ Wisconsin, USDA, ARS, Veg Crops Unit,Dept Hort, Madison, WI 53706 USA
[2] Michigan State Univ, Dept Hort, E Lansing, MI 48824 USA
[3] Inst Geonom Res, Rockville, MD 20850 USA
[4] Calif State Univ Fresno, Dept Biol, Fresno, CA 93740 USA
[5] Crop & Food Res, Christchurch, New Zealand
[6] Lincoln Univ, Appl Management & Comp Div, Lincoln, New Zealand
[7] USDA, ARS, Natl Arid Land Plant Genet Resources Unit, Parlier, CA 93648 USA
关键词
D O I
10.1105/tpc.017202
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Enormous genomic resources have been developed for plants in the monocot order Poales; however, it is not clear how representative the Poales are for the monocots as a whole. The Asparagales are a monophyletic order sister to the lineage carrying the Poales and possess economically important plants such as asparagus, garlic, and onion. To assess the genomic differences between the Asparagales and Poales, we generated 11,008 unique ESTs from a normalized cDNA library of onion. Sequence analyses of these ESTs revealed microsatellite markers, single nucleotide polymorphisms, and homologs of transposable elements. Mean nucleotide similarity between rice and the Asparagales was 78% across coding regions. Expressed sequence and genomic comparisons revealed strong differences between the Asparagales and Poales for codon usage and mean GC content, GC distribution, and relative GC content at each codon position, indicating that genomic characteristics are not uniform across the monocots. The Asparagales were more similar to eudicots than to the Poales for these genomic characteristics.
引用
收藏
页码:114 / 125
页数:12
相关论文
共 92 条
[1]   Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J].
Kaul, S ;
Koo, HL ;
Jenkins, J ;
Rizzo, M ;
Rooney, T ;
Tallon, LJ ;
Feldblyum, T ;
Nierman, W ;
Benito, MI ;
Lin, XY ;
Town, CD ;
Venter, JC ;
Fraser, CM ;
Tabata, S ;
Nakamura, Y ;
Kaneko, T ;
Sato, S ;
Asamizu, E ;
Kato, T ;
Kotani, H ;
Sasamoto, S ;
Ecker, JR ;
Theologis, A ;
Federspiel, NA ;
Palm, CJ ;
Osborne, BI ;
Shinn, P ;
Conway, AB ;
Vysotskaia, VS ;
Dewar, K ;
Conn, L ;
Lenz, CA ;
Kim, CJ ;
Hansen, NF ;
Liu, SX ;
Buehler, E ;
Altafi, H ;
Sakano, H ;
Dunn, P ;
Lam, B ;
Pham, PK ;
Chao, Q ;
Nguyen, M ;
Yu, GX ;
Chen, HM ;
Southwick, A ;
Lee, JM ;
Miranda, M ;
Toriumi, MJ ;
Davis, RW .
NATURE, 2000, 408 (6814) :796-815
[2]  
Arumuganathan K, 1991, PLANT MOL BIOL REP, V9, P208, DOI [DOI 10.1007/BF02672069, 10.1007/BF02672069]
[3]   RETROVIRUSES AND RETROTRANSPOSONS - THE ROLE OF REVERSE TRANSCRIPTION IN SHAPING THE EUKARYOTIC GENOME [J].
BALTIMORE, D .
CELL, 1985, 40 (03) :481-482
[4]   RESTRICTION-FRAGMENT-LENGTH-POLYMORPHISM (RFLP) ANALYSIS OF PROGENY FROM AN ALLIUM-FISTULOSUM X ALLIUM-CEPA HYBRID [J].
BARK, OH ;
HAVEY, MJ ;
CORGAN, JN .
JOURNAL OF THE AMERICAN SOCIETY FOR HORTICULTURAL SCIENCE, 1994, 119 (05) :1046-1049
[5]   SIMILARITIES AND RELATIONSHIPS AMONG POPULATIONS OF THE BULB ONION AS ESTIMATED BY NUCLEAR RFLPS [J].
BARK, OH ;
HAVEY, MJ .
THEORETICAL AND APPLIED GENETICS, 1995, 90 (3-4) :407-414
[6]   NUCLEAR-DNA AMOUNTS IN ANGIOSPERMS [J].
BENNETT, MD ;
SMITH, JB .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1976, 274 (933) :227-274
[7]   ACTIVE MAIZE GENES ARE UNMODIFIED AND FLANKED BY DIVERSE CLASSES OF MODIFIED, HIGHLY REPETITIVE DNA [J].
BENNETZEN, JL ;
SCHRICK, K ;
SPRINGER, PS ;
BROWN, WE ;
SANMIGUEL, P .
GENOME, 1994, 37 (04) :565-576
[8]  
Benson DA, 2003, NUCLEIC ACIDS RES, V31, P23, DOI 10.1093/nar/gkg057
[9]   Isochores and the evolutionary genomics of vertebrates [J].
Bernardi, G .
GENE, 2000, 241 (01) :3-17
[10]   The compositional evolution of vertebrate genomes [J].
Bernardi, G .
GENE, 2000, 259 (1-2) :31-43