A novel biosensor system for cyanide based on a chemiluminescence reaction

被引:20
作者
Ikebukuro, K
Shimomura, M
Onuma, N
Watanabe, A
Nomura, Y
Nakanishi, K
Arikawa, Y
Karube, I
机构
[1] UNIV TOKYO,ADV SCI & TECHNOL RES CTR,MEGURO KU,TOKYO 153,JAPAN
[2] OCHANOMIZU UNIV,FAC SCI,DEPT CHEM & BIOL SCI,BUNKYO KU,TOKYO 112,JAPAN
关键词
cyanide; rhodanese; sulfite oxidase; luminol; chemiluminescence; flow injection;
D O I
10.1016/0003-2670(96)00094-3
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A highly sensitive biosensor system has been developed for cyanide detection, based on the rhodanese-sulfite oxidase reaction and subsequent luminol chemiluminescence reaction. The system consists of an immobilized rhodanese column, an immobilized sulfite oxidase column, a mixing chamber for the chemiluminescence reaction and a photomultiplier tube, The sulfite generated by the reaction of cyanide and sodium thiosulfate catalyzed by rhodanese reacts with sulfite oxidase and produces sulfate and hydrogen peroxide. The hydrogen peroxide then reacts with luminol and peroxidase (from Arthromyces ramosus (E.C. 1.11.1.7)) and the consequent chemiluminescence is detected. This system uses a flow injection analysis (FIA) system resulting in the rapid determination of cyanide, which takes approximately 2 min per measurement. A linear response was observed from 120nM to 3.8 mu M cyanide with a relative standard deviation for 380nM was less than 5% (n=6). The detection limit was 12nM. The immobilized rhodanese and sulfite oxidase column can be used 150 times.
引用
收藏
页码:111 / 116
页数:6
相关论文
共 20 条
[1]   LUMINOL CHEMILUMINESCENCE REACTION CATALYZED BY A MICROBIAL PEROXIDASE [J].
AKIMOTO, K ;
SHINMEN, Y ;
SUMIDA, M ;
ASAMI, S ;
AMACHI, T ;
YOSHIZUMI, H ;
SAEKI, Y ;
SHIMIZU, S ;
YAMADA, H .
ANALYTICAL BIOCHEMISTRY, 1990, 189 (02) :182-185
[2]   *UBER DIE VERWENDUNG DER BARBITURSAURE FUR DIE PHOTOMETRISCHE BESTIMMUNG VON CYANID UND RHODANID [J].
ASMUS, E ;
GARSCHAGEN, H .
FRESENIUS ZEITSCHRIFT FUR ANALYTISCHE CHEMIE, 1953, 138 (06) :414-422
[3]   DEVELOPMENT OF AN ENZYME MEMBRANE REACTOR FOR TREATMENT OF CYANIDE-CONTAINING WASTEWATERS FROM THE FOOD-INDUSTRY [J].
BASHEER, S ;
KUT, OM ;
PRENOSIL, JE ;
BOURNE, JR .
BIOTECHNOLOGY AND BIOENGINEERING, 1993, 41 (04) :465-473
[4]   DEVELOPMENT OF A FLOW-INJECTION ANALYSIS SYSTEM UTILIZING PIEZOELECTRIC-CRYSTALS FOR THE DETERMINATION OF CYANIDE EMPLOYING SMALL SAMPLE SIZES [J].
BUNDE, RL ;
ROSENTRETER, JJ .
MICROCHEMICAL JOURNAL, 1993, 47 (1-2) :148-156
[5]   ESTIMATION OF MICROQUANTITIES OF CYANIDE [J].
EPSTEIN, J .
ANALYTICAL CHEMISTRY, 1947, 19 (04) :272-274
[6]   ENZYME METHOD FOR THE SPECTROPHOTOMETRIC DETERMINATION OF MICRO-AMOUNTS OF CYANIDE [J].
FONONG, T .
ANALYST, 1987, 112 (07) :1033-1035
[7]   ELECTRODE INDICATOR TECHNIQUE FOR MEASURING LOW-LEVELS OF CYANIDE [J].
FRANT, MS ;
ROSS, JW ;
RISEMAN, JH .
ANALYTICAL CHEMISTRY, 1972, 44 (13) :2227-&
[8]   A FLOW THROUGH ANALYSIS BIOSENSOR SYSTEM FOR CYANIDE [J].
GROOM, CA ;
LUONG, JHT .
JOURNAL OF BIOTECHNOLOGY, 1991, 21 (1-2) :161-172
[9]  
*JAP WAT WORKS ASS, 1993, STAND METH EX WAT, P174
[10]  
KUWANA T, 1963, J ELECTROANAL CH INF, V6, P164