Machine learning for science: State of the art and future prospects

被引:262
作者
Mjolsness, E [1 ]
DeCoste, D [1 ]
机构
[1] CALTECH, Jet Prop Lab, Machine Learning Syst Grp, Pasadena, CA 91109 USA
关键词
D O I
10.1126/science.293.5537.2051
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent advances in machine learning methods, along with successful applications across a wide variety of fields such as planetary science and bioinformatics, promise powerful new tools for practicing scientists. This viewpoint highlights some useful characteristics of modern machine learning methods and their relevance to scientific applications. We conclude with some speculations on near-term progress and promising directions.
引用
收藏
页码:2051 / +
页数:5
相关论文
共 15 条
[1]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159
[2]  
BROWN M, 2000, P NATL ACAD SCI USA, V97, P1
[3]   Prediction of complete gene structures in human genomic DNA [J].
Burge, C ;
Karlin, S .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 268 (01) :78-94
[4]   Learning to recognize volcanoes on Venus [J].
Burl, MC ;
Asker, L ;
Smyth, P ;
Fayyad, U ;
Perona, P ;
Crumpler, L ;
Aubele, J .
MACHINE LEARNING, 1998, 30 (2-3) :165-194
[5]   Cluster analysis and display of genome-wide expression patterns [J].
Eisen, MB ;
Spellman, PT ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14863-14868
[6]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537
[7]   Imaging brain dynamics using independent component analysis [J].
Jung, TP ;
Makeig, S ;
McKeown, MJ ;
Bell, AJ ;
Lee, TW ;
Sejnowski, TJ .
PROCEEDINGS OF THE IEEE, 2001, 89 (07) :1107-1122
[8]  
Mitchell T., 1997, Machine Learning, V7, P2
[9]  
Mjolsness E, 2000, ADV NEUR IN, V12, P928
[10]   Nonlinear dimensionality reduction by locally linear embedding [J].
Roweis, ST ;
Saul, LK .
SCIENCE, 2000, 290 (5500) :2323-+