Targeted metagenomics and ecology of globally important uncultured eukaryotic phytoplankton

被引:219
作者
Cuvelier, Marie L. [1 ,2 ]
Allen, Andrew E. [3 ]
Monier, Adam [1 ]
McCrow, John P. [3 ]
Messie, Monique [1 ]
Tringe, Susannah G. [4 ]
Woyke, Tanja [4 ]
Welsh, Rory M. [1 ]
Ishoey, Thomas [3 ]
Lee, Jae-Hyeok [5 ]
Binder, Brian J. [6 ]
DuPont, Chris L. [3 ]
Latasa, Mikel [7 ]
Guigand, Cedric [2 ]
Buck, Kurt R. [1 ]
Hilton, Jason [2 ]
Thiagarajan, Mathangi [3 ]
Caler, Elisabet [3 ]
Read, Betsy [8 ]
Lasken, Roger S. [3 ]
Chavez, Francisco P. [1 ]
Worden, Alexandra Z. [1 ,2 ]
机构
[1] Monterey Bay Aquarium Res Inst, Moss Landing, CA 95039 USA
[2] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA
[3] J Craig Venter Inst, San Diego, CA 92121 USA
[4] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA
[5] Washington Univ, Dept Biol, St Louis, MO 63130 USA
[6] Univ Georgia, Dept Marine Sci, Athens, GA USA
[7] CSIC, Inst Ciencies Mar, E-08003 Barcelona, Spain
[8] Calif State Univ, Dept Biol Sci, San Marcos, CA 92096 USA
基金
美国国家卫生研究院; 美国海洋和大气管理局;
关键词
comparative genomics; primary production; prymnesiophytes; marine photosynthesis; haptophytes; COMMUNITY STRUCTURE; EQUATORIAL PACIFIC; DIVERSITY; PIGMENT; OCEAN; PICOPHYTOPLANKTON; EVOLUTION; PROCHLOROCOCCUS; VARIABILITY; INSIGHTS;
D O I
10.1073/pnas.1001665107
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Among eukaryotes, four major phytoplankton lineages are responsible for marine photosynthesis; prymnesiophytes, alveolates, stramenopiles, and prasinophytes. Contributions by individual taxa, however, are not well known, and genomes have been analyzed from only the latter two lineages. Tiny "picoplanktonic" members of the prymnesiophyte lineage have long been inferred to be ecologically important but remain poorly characterized. Here, we examine pico-prymnesiophyte evolutionary history and ecology using cultivation-independent methods. 18S rRNA gene analysis showed pico-prymnesiophytes belonged to broadly distributed uncultivated taxa. Therefore, we used targeted metagenomics to analyze uncultured pico-prymnesiophytes sorted by flow cytometry from subtropical North Atlantic waters. The data reveal a composite nuclear-encoded gene repertoire with strong green-lineage affiliations, which contrasts with the evolutionary history indicated by the plastid genome. Measured pico-prymnesiophyte growth rates were rapid in this region, resulting in primary production contributions similar to the cyanobacterium Prochlorococcus. On average, pico-prymnesiophytes formed 25% of global picophytoplankton biomass, with differing contributions in five biogeographical provinces spanning tropical to subpolar systems. Elements likely contributing to success include high gene density and genes potentially involved in defense and nutrient uptake. Our findings have implications reaching beyond pico-prymnesiophytes, to the prasinophytes and stramenopiles. For example, prevalence of putative Ni-containing superoxide dismutases (SODs), instead of Fe-containing SODs, seems to be a common adaptation among eukaryotic phytoplankton for reducing Fe quotas in low-Fe modern oceans. Moreover, highly mosaic gene repertoires, although compositionally distinct for each major eukaryotic lineage, now seem to be an underlying facet of successful marine phytoplankton.
引用
收藏
页码:14679 / 14684
页数:6
相关论文
共 40 条
[11]   Primary production of the biosphere: Integrating terrestrial and oceanic components [J].
Field, CB ;
Behrenfeld, MJ ;
Randerson, JT ;
Falkowski, P .
SCIENCE, 1998, 281 (5374) :237-240
[12]   Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups" [J].
Hampl, Vladimir ;
Hug, Laura ;
Leigh, Jessica W. ;
Dacks, Joel B. ;
Lang, B. Franz ;
Simpson, Alastair G. B. ;
Roger, Andrew J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (10) :3859-3864
[13]   Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic Ocean [J].
Jardillier, Ludwig ;
Zubkov, Mikhail V. ;
Pearman, John ;
Scanlan, David J. .
ISME JOURNAL, 2010, 4 (09) :1180-1192
[14]   The tree of eukaryotes [J].
Keeling, PJ ;
Burger, G ;
Durnford, DG ;
Lang, BF ;
Lee, RW ;
Pearlman, RE ;
Roger, AJ ;
Gray, MW .
TRENDS IN ECOLOGY & EVOLUTION, 2005, 20 (12) :670-676
[15]   Sequence analysis and transcriptional regulation of iron acquisition genes in two marine diatoms [J].
Kustka, Adam B. ;
Allen, Andrew E. ;
Morel, Francois M. M. .
JOURNAL OF PHYCOLOGY, 2007, 43 (04) :715-729
[16]  
Landry M.R., 1993, handbook of methods in aquatic microbial ecology, P715
[17]   Phytoplankton growth and microzooplankton grazing in high-nutrient, low-chlorophyll waters of the equatorial Pacific: Community and taxon-specific rate assessments from pigment and flow cytometric analyses [J].
Landry, MR ;
Brown, SL ;
Neveux, J ;
Dupouy, C ;
Blanchot, J ;
Christensen, S ;
Bidigare, RR .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2003, 108 (C12)
[18]   Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids [J].
Le Corguille, Gildas ;
Pearson, Gareth ;
Valente, Marta ;
Viegas, Carla ;
Gschloessl, Bernhard ;
Corre, Erwan ;
Bailly, Xavier ;
Peters, Akira F. ;
Jubin, Claire ;
Vacherie, Benoit ;
Cock, J. Mark ;
Leblanc, Catherine .
BMC EVOLUTIONARY BIOLOGY, 2009, 9
[19]   TEMPORAL VARIABILITY OF PHYTOPLANKTON COMMUNITY STRUCTURE-BASED ON PIGMENT ANALYSIS [J].
LETELIER, RM ;
BIDIGARE, RR ;
HEBEL, DV ;
ONDRUSEK, M ;
WINN, CD ;
KARL, DM .
LIMNOLOGY AND OCEANOGRAPHY, 1993, 38 (07) :1420-1437
[20]   Smallest Algae Thrive As the Arctic Ocean Freshens [J].
Li, William K. W. ;
McLaughlin, Fiona A. ;
Lovejoy, Connie ;
Carmack, Eddy C. .
SCIENCE, 2009, 326 (5952) :539-539