Effect of methanol concentration on CTAB micellization and on the formation of surfactant-templated silica (STS)

被引:88
作者
Anderson, MT
Martin, JE
Odinek, JG
Newcomer, PP
机构
[1] Sandia Natl Labs, Encapsulants & Porous Mat Dept, Albuquerque, NM 87185 USA
[2] Sandia Natl Labs, Nanostruct & Adv Mat Chem Dept, Albuquerque, NM 87185 USA
关键词
D O I
10.1021/cm970240m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We use Light-scattering techniques to study the effects of methanol concentration on alkaline, cetyltrimethylammonium bromide (CTAB) water:methanol micellar solutions. We use X-ray diffraction, SEM, TEM, Si-29 NMR, and gas sorption measurements to study the structure, microstructure, and porosity of surfactant-templated silica (STS), synthesized by adding tetramethoxysilane (TMOS) to the above micellar solutions. The measured critical micelle concentration (cmc) for CTAB at 25 degrees C in a 0.22 M NaOH (pH 13.2) solvent increases from similar to 1.3 x 10(-3) M for r = 0% to similar to 5.5 x 10(-2) M for r = 60% (where r is the wt % methanol in the mixture) as the concentration of methanol increases. In turn, the long-range order of STS decreases as the methanol concentration increases. Ordered STS forms for 0 less than or equal to r < 60%, where the concentration of CTAB, c, is greater than cmc in the precursor solution; disordered STS (resembling wormlike micelles) forms for 60 less than or equal to r less than or equal to 90%, where c < cmc. For r > 90% transparent, amorphous chemical gels form. The presence of methanol leads to a uniform submicron microstructure as compared to faceted 1-10-mu m particles with pure water. After template removal, apparent BET surface areas for STS can exceed 950 m(2)/g, and the void volume can exceed 0.6 cm(3)/g. Initially, there is a high fraction of uncondensed silica in the as-made product (Q(3)/Q(4), approximate to 2.1), but after calcination a strong, bonded siloxane framework forms (Q(3)/Q(4) approximate to 0.40).
引用
收藏
页码:1490 / 1500
页数:11
相关论文
共 37 条
[1]   Monolithic periodic mesoporous silica gels [J].
Anderson, MT ;
Martin, JE ;
Odinek, JG ;
Newcomer, PP ;
Wilcoxon, JP .
MICROPOROUS MATERIALS, 1997, 10 (1-3) :13-24
[2]   Surfactant-templated silica mesophases formed in water:cosolvent mixtures [J].
Anderson, MT ;
Martin, JE ;
Odinek, JG ;
Newcomer, PP .
CHEMISTRY OF MATERIALS, 1998, 10 (01) :311-321
[3]  
ANDERSON MT, IN PRESS MICROPOROUS
[4]   MESOPOROUS ALUMINOSILICATE MCM-41 AS A CONVENIENT ACID CATALYST FOR FRIEDEL-CRAFTS ALKYLATION OF A BULKY AROMATIC COMPOUND WITH CINNAMYL ALCOHOL [J].
ARMENGOL, E ;
CANO, ML ;
CORMA, A ;
GARCIA, H ;
NAVARRO, MT .
JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1995, (05) :519-520
[5]   A NEW FAMILY OF MESOPOROUS MOLECULAR-SIEVES PREPARED WITH LIQUID-CRYSTAL TEMPLATES [J].
BECK, JS ;
VARTULI, JC ;
ROTH, WJ ;
LEONOWICZ, ME ;
KRESGE, CT ;
SCHMITT, KD ;
CHU, CTW ;
OLSON, DH ;
SHEPPARD, EW ;
MCCULLEN, SB ;
HIGGINS, JB ;
SCHLENKER, JL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (27) :10834-10843
[6]  
Berne BJ, 1976, Dynamic Light Scattering
[7]  
Borghard W. S., 1993, Aromatics Saturation With Catalysts Comprising Crystalline Ultra-Large Pore Oxide Materials, Patent No. [US5264641, 5366945]
[8]   STUDIES ON MESOPOROUS MATERIALS .1. SYNTHESIS AND CHARACTERIZATION OF MCM-41 [J].
CHEN, CY ;
LI, HX ;
DAVIS, ME .
MICROPOROUS MATERIALS, 1993, 2 (01) :17-26
[9]  
COGAN JD, 1946, CHEM ENG NEWS, V24, P2499
[10]   HYDROCRACKING OF VACUUM GAS-OIL ON THE NOVEL MESOPOROUS MCM-41 ALUMINOSILICATE CATALYST [J].
CORMA, A ;
MARTINEZ, A ;
MARTINEZSORIA, V ;
MONTON, JB .
JOURNAL OF CATALYSIS, 1995, 153 (01) :25-31