Surfactant-templated silica mesophases formed in water:cosolvent mixtures

被引:94
作者
Anderson, MT
Martin, JE
Odinek, JG
Newcomer, PP
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] 3M Co, Ceram Technol Ctr, St Paul, MN 55144 USA
关键词
D O I
10.1021/cm9704600
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silica/surfactant mesophases have been synthesized in 14 water:cosolvent mixtures by combining tetramethoxysilane with a basic 2 wt % CTAB solution. The effects of the water-to-cosolvent ratio on the formation of supramolecular surfactant templates and ultimately silica/surfactant mesophases is reported for: diethyl ether, ethyl acetate, tetrahydrofuran, tetraglyme, methylene chloride, 2-propanol, acetone, ethanol, methanol, ethylene glycol, acetonitrile, glycerol, formamide, and N-methylformamide. X-ray diffraction (XRD), dynamic and static light scattering (DLS/SLS), scanning and transmission electron microscopies (SEM/ TEM), and nitrogen sorption techniques are used to characterize the mesophases. Generally, polar cosolvents decrease the extent of aggregation of CTAB and lead to an evolution from ordered (o-H) hexagonally packed silica (HPS) to disordered (d-H) HPS as the cosolvent concentration is increased. Polar cosolvents allow the unit cell size of the mesophase to be tuned continuously over similar to-5 Angstrom: protic solvents decrease the cell size; aprotic solvents increase the cell size. Highly polar protic solvents, such as formamide and ethylene glycol, support substantially nonaqeous synthesis of o-H and d-H mesophases with water:silica ratio less than 4.0. Low dielectric constant cosolvents lead to expanded o-H mesophases at low concentrations, and cubic and lamellar phases at higher concentrations. Cosolvents can be used to synthesize mixed-metal framework structures from homogeneous solutions by premixing molecular inorganic precursors in a compatible nonaqueous solvent and then controllably hydrolyzing the precursors. Cosolvents also influence microstructure, leading to smaller, more curved primary particles than in pure water.
引用
收藏
页码:311 / 321
页数:11
相关论文
共 33 条
[1]  
ANDERSON MT, UNPUB CHHEM MAT
[2]   LIQUID-CRYSTALLINE PHASES AS TEMPLATES FOR THE SYNTHESIS OF MESOPOROUS SILICA [J].
ATTARD, GS ;
GLYDE, JC ;
GOLTNER, CG .
NATURE, 1995, 378 (6555) :366-368
[3]   X-RAY-DIFFRACTION STUDY OF MESOPHASES OF CETYLTRIMETHYLAMMONIUM BROMIDE IN WATER, FORMAMIDE, AND GLYCEROL [J].
AUVRAY, X ;
PETIPAS, C ;
ANTHORE, R ;
RICO, I ;
LATTES, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1989, 93 (21) :7458-7464
[4]   INFLUENCE OF SOLVENT HEADGROUP INTERACTIONS ON THE FORMATION OF LYOTROPIC LIQUID-CRYSTAL PHASES OF SURFACTANTS IN WATER AND NONAQUEOUS PROTIC AND APROTIC-SOLVENTS [J].
AUVRAY, X ;
PERCHE, T ;
PETIPAS, C ;
ANTHORE, R ;
MARTI, MJ ;
RICO, I ;
LATTES, A .
LANGMUIR, 1992, 8 (11) :2671-2679
[5]   MOLECULAR OR SUPRAMOLECULAR TEMPLATING - DEFINING THE ROLE OF SURFACTANT CHEMISTRY IN THE FORMATION OF MICROPOROUS AND MESOPOROUS MOLECULAR-SIEVES [J].
BECK, JS ;
VARTULI, JC ;
KENNEDY, GJ ;
KRESGE, CT ;
ROTH, WJ ;
SCHRAMM, SE .
CHEMISTRY OF MATERIALS, 1994, 6 (10) :1816-1821
[6]   A NEW FAMILY OF MESOPOROUS MOLECULAR-SIEVES PREPARED WITH LIQUID-CRYSTAL TEMPLATES [J].
BECK, JS ;
VARTULI, JC ;
ROTH, WJ ;
LEONOWICZ, ME ;
KRESGE, CT ;
SCHMITT, KD ;
CHU, CTW ;
OLSON, DH ;
SHEPPARD, EW ;
MCCULLEN, SB ;
HIGGINS, JB ;
SCHLENKER, JL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (27) :10834-10843
[7]   STUDIES ON MESOPOROUS MATERIALS .2. SYNTHESIS MECHANISM OF MCM-41 [J].
CHEN, CY ;
BURKETT, SL ;
LI, HX ;
DAVIS, ME .
MICROPOROUS MATERIALS, 1993, 2 (01) :27-34
[8]  
COGAN JD, 1946, CHEM ENG NEWS, V24, P2499
[9]   Pulsed field gradient spin-echo NMR experiments in micellar solutions of water/cetyltrimethyl-ammonium bromide system [J].
Coppola, L. ;
Muzzalupo, R. ;
Ranieri, G.A. ;
Terenzi, M. .
Journal De Physique, II, 1994, 4 (12)
[10]   ACIDITY AND STABILITY OF MCM-41 CRYSTALLINE ALUMINOSILICATES [J].
CORMA, A ;
FORNES, V ;
NAVARRO, MT ;
PEREZPARIENTE, J .
JOURNAL OF CATALYSIS, 1994, 148 (02) :569-574