An amorphous solid state of biogenic secondary organic aerosol particles

被引:607
作者
Virtanen, Annele [1 ]
Joutsensaari, Jorma [2 ]
Koop, Thomas [3 ]
Kannosto, Jonna [1 ]
Yli-Pirila, Pasi [4 ]
Leskinen, Jani [4 ]
Makela, Jyrki M. [1 ]
Holopainen, Jarmo K. [4 ]
Poeschl, Ulrich [5 ]
Kulmala, Markku [6 ,7 ]
Worsnop, Douglas R. [2 ,6 ,8 ,9 ]
Laaksonen, Ari [2 ,9 ]
机构
[1] Tampere Univ Technol, Dept Phys, FIN-33101 Tampere, Finland
[2] Univ Eastern Finland, Dept Math & Phys, Kuopio 70211, Finland
[3] Univ Bielefeld, Dept Chem, D-33615 Bielefeld, Germany
[4] Univ Eastern Finland, Dept Environm Sci, Kuopio 70211, Finland
[5] Max Planck Inst Chem, Biogeochem Dept, D-55128 Mainz, Germany
[6] Univ Helsinki, Dept Phys, Helsinki 00014, Finland
[7] Stockholm Univ, Dept Appl Environm Sci, S-10691 Stockholm, Sweden
[8] Aerodyne Res Inc, Billerica, MA 01821 USA
[9] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland
基金
芬兰科学院;
关键词
ATMOSPHERIC PARTICLES; OLEIC-ACID; MODEL; OXIDATION; CLIMATE; CHEMISTRY; DIFFUSION; EMISSIONS; PRODUCTS; FORESTS;
D O I
10.1038/nature09455
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Secondary organic aerosol (SOA) particles are formed in the atmosphere from condensable oxidation products of anthropogenic and biogenic volatile organic compounds (VOCs)(1-7). On a global scale, biogenic VOCs account for about 90% of VOC emissions(1,8) and of SOA formation (90 billion kilograms of carbon per year)(1-4). SOA particles can scatter radiation and act as cloud condensation or ice nuclei, and thereby influence the Earth's radiation balance and climate(1,2,5,9,10). They consist of a myriad of different compounds with varying physicochemical properties, and little information is available on the phase state of SOA particles. Gas-particle partitioning models usually assume that SOA particles are liquid(1,5,11), but here we present experimental evidence that they can be solid under ambient conditions. We investigated biogenic SOA particles formed from oxidation products of VOCs in plant chamber experiments and in boreal forests within a few hours after atmospheric nucleation events. On the basis of observed particle bouncing in an aerosol impactor and of electron microscopy we conclude that biogenic SOA particles can adopt an amorphous solid-most probably glassy-state. This amorphous solid state should provoke a rethinking of SOA processes because it may influence the partitioning of semi-volatile compounds, reduce the rate of heterogeneous chemical reactions, affect the particles' ability to accommodate water and act as cloud condensation or ice nuclei, and change the atmospheric lifetime of the particles(12-15). Thus, the results of this study challenge traditional views of the kinetics and thermodynamics of SOA formation and transformation in the atmosphere and their implications for air quality and climate.
引用
收藏
页码:824 / 827
页数:4
相关论文
共 29 条
[1]  
[Anonymous], 2007, Climate Change 2007: The Physical Science Basis, P161
[2]   Measurements of secondary organic aerosol from oxidation of cycloalkenes, terpenes, and m-xylene using an Aerodyne aerosol mass spectrometer [J].
Bahreini, R ;
Keywood, MD ;
Ng, NL ;
Varutbangkul, V ;
Gao, S ;
Flagan, RC ;
Seinfeld, JH ;
Worsnop, DR ;
Jimenez, JL .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (15) :5674-5688
[3]   Formation of secondary organic aerosols through photooxidation of isoprene [J].
Claeys, M ;
Graham, B ;
Vas, G ;
Wang, W ;
Vermeylen, R ;
Pashynska, V ;
Cafmeyer, J ;
Guyon, P ;
Andreae, MO ;
Artaxo, P ;
Maenhaut, W .
SCIENCE, 2004, 303 (5661) :1173-1176
[4]   CAPTURE OF AEROSOL PARTICLES BY SURFACES [J].
DAHNEKE, B .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1971, 37 (02) :342-&
[5]   Hygroscopic properties of ultrafine aerosol particles in the boreal forest:: diurnal variation, solubility and the influence of sulfuric acid [J].
Ehn, M. ;
Petaejae, T. ;
Aufmhoff, H. ;
Aalto, P. ;
Haemeri, K. ;
Arnold, F. ;
Laaksonen, A. ;
Kulmala, M. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 :211-222
[6]   Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change [J].
Fuzzi, S. ;
Andreae, M. O. ;
Huebert, B. J. ;
Kulmala, M. ;
Bond, T. C. ;
Boy, M. ;
Doherty, S. J. ;
Guenther, A. ;
Kanakidou, M. ;
Kawamura, K. ;
Kerminen, V. -M. ;
Lohmann, U. ;
Russell, L. M. ;
Poeschl, U. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :2017-2038
[7]   A GLOBAL-MODEL OF NATURAL VOLATILE ORGANIC-COMPOUND EMISSIONS [J].
GUENTHER, A ;
HEWITT, CN ;
ERICKSON, D ;
FALL, R ;
GERON, C ;
GRAEDEL, T ;
HARLEY, P ;
KLINGER, L ;
LERDAU, M ;
MCKAY, WA ;
PIERCE, T ;
SCHOLES, B ;
STEINBRECHER, R ;
TALLAMRAJU, R ;
TAYLOR, J ;
ZIMMERMAN, P .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1995, 100 (D5) :8873-8892
[8]   The formation, properties and impact of secondary organic aerosol: current and emerging issues [J].
Hallquist, M. ;
Wenger, J. C. ;
Baltensperger, U. ;
Rudich, Y. ;
Simpson, D. ;
Claeys, M. ;
Dommen, J. ;
Donahue, N. M. ;
George, C. ;
Goldstein, A. H. ;
Hamilton, J. F. ;
Herrmann, H. ;
Hoffmann, T. ;
Iinuma, Y. ;
Jang, M. ;
Jenkin, M. E. ;
Jimenez, J. L. ;
Kiendler-Scharr, A. ;
Maenhaut, W. ;
McFiggans, G. ;
Mentel, Th. F. ;
Monod, A. ;
Prevot, A. S. H. ;
Seinfeld, J. H. ;
Surratt, J. D. ;
Szmigielski, R. ;
Wildt, J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (14) :5155-5236
[9]  
Hameri K., 2000, Rep.Ser.Aerosol Sci, V47, P47
[10]  
Hari P, 2005, BOREAL ENVIRON RES, V10, P315