Cyclic GMP and cGMP-binding phosphodiesterase are required for interleukin-1-induced nitric oxide synthesis in human articular chondrocytes

被引:23
作者
Geng, Y
Zhou, L
Thompson, WJ
Lotz, M [1 ]
机构
[1] Scripps Res Inst, Dept Mol & Expt Med, La Jolla, CA 92037 USA
[2] Univ S Alabama, Coll Med, Dept Pharmacol, Mobile, AL 36688 USA
关键词
D O I
10.1074/jbc.273.42.27484
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study addressed the role of guanylyl cyclase (GC) and phosphodiesterase (PDE) in interleukin (IL)-1 activation of human articular chondrocytes, The GC inhibitors LY83583 and methylene blue dose dependently inhibited IL-1-induced nitric oxide (NO) production, inducible NO synthase (iNOS) protein, and mRNA expression. These effects of GC inhibition were consistent with the rapid induction of cGMP by IL-1, which reached maximal levels after 5 min. The effects of GC inhibitors were selective as they did not reduce IL-1-induced cyclooxygenase II protein and mRNA. An inhibitor specific for soluble GC did not affect IL-1-induced NO production, and activators of soluble GC did not induce NO. However, the expression of iNOS mRNA was induced by atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP), activators of particulate GC, indicating that particulate rather than soluble guanylyl cyclases were involved in iNOS induction. The expression of iNOS mRNA and the production of NO were induced by a slowly hydrolyzable analog of cGMP, 8-bromo-cGMP, but not by nonhydrolyzable analog, dibutyryl cGMP, suggesting that PDE rather than cGMP-dependent protein kinase mediates the cGMP effects. Chondrocytes contained extensive cGMP PDE activity. This had PDE5 biochemical features and an inhibitor profile consistent with PDES, Furthermore, the nonisoform-specific PDE inhibitor IBMX and PDES specific inhibitors suppressed IL-1-induced NO release and iNOS mRNA expression, PDE5 mRNA was constitutively expressed in chondrocytes. In addition to increasing PDE5 activities, IL-1 treatment reduced the sensitivity of PDE5 to several pharmacological inhibitors by up to 50-fold. In summary, inhibitors of either GC or PDE5 prevented IL-1 induction of iNOS; IL-1 increased the rates of both cGMP generation and hydrolysis; and exogenous PDE hydrolyzable cGMP analog induced iNOS and NO. These results suggest that increased cGMP metabolic flux is sufficient to induce iNOS, and GC and PDE5 activities are required for IL-1 induction of iNOS expression via increases in coupled cGMP synthesis and hydrolysis.
引用
收藏
页码:27484 / 27491
页数:8
相关论文
共 66 条
[1]  
AMES A, 1986, J BIOL CHEM, V261, P3034
[2]   How photons start vision [J].
Baylor, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (02) :560-565
[3]   INTERLEUKIN-1 INDUCES PROLONGED L-ARGININE-DEPENDENT CYCLIC GUANOSINE-MONOPHOSPHATE AND NITRITE PRODUCTION IN RAT VASCULAR SMOOTH-MUSCLE CELLS [J].
BEASLEY, D ;
SCHWARTZ, JH ;
BRENNER, BM .
JOURNAL OF CLINICAL INVESTIGATION, 1991, 87 (02) :602-608
[4]   INTERLEUKIN-1 ACTIVATES SOLUBLE GUANYLATE-CYCLASE IN HUMAN VASCULAR SMOOTH-MUSCLE CELLS THROUGH A NOVEL NITRIC OXIDE-INDEPENDENT PATHWAY [J].
BEASLEY, D ;
MCGUIGGIN, M .
JOURNAL OF EXPERIMENTAL MEDICINE, 1994, 179 (01) :71-80
[5]   CYCLIC-NUCLEOTIDE PHOSPHODIESTERASES - FUNCTIONAL IMPLICATIONS OF MULTIPLE ISOFORMS [J].
BEAVO, JA .
PHYSIOLOGICAL REVIEWS, 1995, 75 (04) :725-748
[6]  
BIANCO FJ, 1995, AM J PATHOL, V146, P75
[7]   IL-1-INDUCED NITRIC-OXIDE INHIBITS CHONDROCYTE PROLIFERATION VIA PGE2 [J].
BLANCO, FJ ;
LOTZ, M .
EXPERIMENTAL CELL RESEARCH, 1995, 218 (01) :319-325
[8]   NITRIC-OXIDE PRODUCTION BY MURINE MACROPHAGES IS INHIBITED BY PROLONGED ELEVATION OF CYCLIC-AMP [J].
BULUT, V ;
SEVERN, A ;
LIEW, FY .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1993, 195 (02) :1134-1138
[9]   IRAK: A kinase associated with the interleukin-1 receptor [J].
Cao, ZD ;
Henzel, WJ ;
Gao, XO .
SCIENCE, 1996, 271 (5252) :1128-1131
[10]   CLONING, CHARACTERIZATION, AND EXPRESSION OF A CDNA-ENCODING AN INDUCIBLE NITRIC-OXIDE SYNTHASE FROM THE HUMAN CHONDROCYTE [J].
CHARLES, IG ;
PALMER, RMJ ;
HICKERY, MS ;
BAYLISS, MT ;
CHUBB, AP ;
HALL, VS ;
MOSS, DW ;
MONCADA, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (23) :11419-11423