Genome-wide identification of cis-regulatory sequences controlling blood and endothelial development

被引:74
作者
Donaldson, IJ
Chapman, M
Kinston, S
Landry, JR
Knezevic, K
Piltz, S
Buckley, N
Green, AR
Göttgens, B
机构
[1] Univ Cambridge, Cambridge Inst Med Res, Dept Haematol, Cambridge CB2 2XY, England
[2] Univ Leeds, Sch Biochem, Leeds LS2 9JT, W Yorkshire, England
[3] Univ Leeds, Sch Microbiol & Biomed Sci, Leeds LS2 9JT, W Yorkshire, England
关键词
D O I
10.1093/hmg/ddi056
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The development of blood has long served as a model for mammalian cell type specification and differentiation, and yet the underlying transcriptional networks remain ill defined. Characterization of such networks will require genome-wide identification of cis-regulatory sequences and an understanding of how regulatory information is encoded in the primary DNA sequence. Despite progress in lower organisms, genome-wide computational identification of mammalian cis-regulatory sequences has been hindered by increased genomic complexity and cumbersome transgenic assays. Starting with a well-characterized blood stem cell enhancer from the SCL gene, we have developed computational tools for the identification of functionally related gene regulatory sequences. Two candidate enhancers discovered in this way were located in intron 1 of the Fli-1 and PRH/Hex genes, both transcription factors previously implicated in controlling blood and endothelial development. Subsequent transgenic and biochemical analysis demonstrated that the two computationally identified enhancers are functionally related to the SCL stem cell enhancer. The approach developed here may therefore be useful for identifying additional enhancers involved in the control of early blood and endothelial development, and may be adapted to decipher transcriptional regulatory codes controlling a broad range of mammalian developmental programmes.
引用
收藏
页码:595 / 601
页数:7
相关论文
共 33 条
[1]   Deletion of the mouse α-globin regulatory element (HS-26) has an unexpectedly mild phenotype [J].
Anguita, E ;
Sharpe, JA ;
Sloane-Stanley, JA ;
Tufarelli, C ;
Higgs, DR ;
Wood, WG .
BLOOD, 2002, 100 (10) :3450-3456
[2]   Predicting gene expression from sequence [J].
Beer, MA ;
Tavazoie, S .
CELL, 2004, 117 (02) :185-198
[3]   Description and targeted deletion of 5′ hypersensitive site 5 and 6 of the mouse β-globin locus control region [J].
Bender, MA ;
Reik, A ;
Close, J ;
Telling, A ;
Epner, E ;
Fiering, S ;
Hardison, R ;
Groudine, M .
BLOOD, 1998, 92 (11) :4394-4403
[4]   Targeted deletion of 5′HS1 and 5′HS4 of the β-globin locus control region reveals additive activity of the DNaseI hypersensitive sites [J].
Bender, MA ;
Roach, JN ;
Halow, J ;
Close, J ;
Alami, R ;
Bouhassira, EE ;
Groudine, M ;
Fiering, SN .
BLOOD, 2001, 98 (07) :2022-2027
[5]   The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003 [J].
Boeckmann, B ;
Bairoch, A ;
Apweiler, R ;
Blatter, MC ;
Estreicher, A ;
Gasteiger, E ;
Martin, MJ ;
Michoud, K ;
O'Donovan, C ;
Phan, I ;
Pilbout, S ;
Schneider, M .
NUCLEIC ACIDS RESEARCH, 2003, 31 (01) :365-370
[6]   Insights into early vasculogenesis revealed by expression of the ETS-domain transcription factor Fli-1 in wild-type and mutant zebrafish embryos [J].
Brown, LA ;
Rodaway, ARF ;
Schilling, TF ;
Jowett, T ;
Ingham, PW ;
Patient, RK ;
Sharrocks, AD .
MECHANISMS OF DEVELOPMENT, 2000, 90 (02) :237-252
[7]   Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs [J].
Cawley, S ;
Bekiranov, S ;
Ng, HH ;
Kapranov, P ;
Sekinger, EA ;
Kampa, D ;
Piccolboni, A ;
Sementchenko, V ;
Cheng, J ;
Williams, AJ ;
Wheeler, R ;
Wong, B ;
Drenkow, J ;
Yamanaka, M ;
Patel, S ;
Brubaker, S ;
Tammana, H ;
Helt, G ;
Struhl, K ;
Gingeras, TR .
CELL, 2004, 116 (04) :499-509
[8]   Analysis of multiple genomic sequence alignments:: A web resource, online tools, and lessons learned from analysis of mammalian SCL loci [J].
Chapman, MA ;
Donaldson, IJ ;
Gilbert, J ;
Grafham, D ;
Rogers, J ;
Green, AR ;
Göttgens, B .
GENOME RESEARCH, 2004, 14 (02) :313-318
[9]   Identifying gene regulatory elements by genome-wide recovery of DNase hypersensitive sites [J].
Crawford, GE ;
Holt, IE ;
Mullikin, JC ;
Tai, D ;
Green, ED ;
Wolfsberg, TG ;
Collins, FS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (04) :992-997
[10]   A genomic regulatory network for development [J].
Davidson, EH ;
Rast, JP ;
Oliveri, P ;
Ransick, A ;
Calestani, C ;
Yuh, CH ;
Minokawa, T ;
Amore, G ;
Hinman, V ;
Arenas-Mena, C ;
Otim, O ;
Brown, CT ;
Livi, CB ;
Lee, PY ;
Revilla, R ;
Rust, AG ;
Pan, ZJ ;
Schilstra, MJ ;
Clarke, PJC ;
Arnone, MI ;
Rowen, L ;
Cameron, RA ;
McClay, DR ;
Hood, L ;
Bolouri, H .
SCIENCE, 2002, 295 (5560) :1669-1678