When individual behaviour matters: homogeneous and network models in epidemiology

被引:469
作者
Bansal, Shweta
Grenfell, Bryan T.
Meyers, Lauren Ancel
机构
[1] Univ Texas, Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Penn State Univ, Ctr Infect Dis Dynam, Dept Biol, Mueller Lab 208, University Pk, PA 16802 USA
[3] NIH, Fogarty Int Ctr, Bethesda, MD 20892 USA
[4] Univ Texas, Inst Mol & Cellular Biol, Sect Integrat Biol, Austin, TX 78712 USA
[5] Santa Fe Inst, Santa Fe, NM 87501 USA
关键词
epidemic model; compartmental model; homogeneous-mixing; contact network;
D O I
10.1098/rsif.2007.1100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Heterogeneity in host contact patterns profoundly shapes population-level disease dynamics. Many epidemiological models make simplifying assumptions about the patterns of disease-causing interactions among hosts. In particular, homogeneous-mixing models assume that all hosts have identical rates of disease-causing contacts. In recent years, several network-based approaches have been developed to explicitly model heterogeneity in host contact patterns. Here, we use a network perspective to quantify the extent to which real populations depart from the homogeneous-mixing assumption, in terms of both the underlying network structure and the resulting epidemiological dynamics. We find that human contact patterns are indeed more heterogeneous than assumed by homogeneous-mixing models, but are not as variable as some have speculated. We then evaluate a variety of methodologies for incorporating contact heterogeneity, including network-based models and several modi. cations to the simple SIR compartmental model. We conclude that the homogeneous-mixing compartmental model is appropriate when host populations are nearly homogeneous, and can be modified effectively for a few classes of non-homogeneous networks. In general, however, network models are more intuitive and accurate for predicting disease spread through heterogeneous host populations.
引用
收藏
页码:879 / 891
页数:13
相关论文
共 70 条
[21]   Modelling disease outbreaks in realistic urban social networks [J].
Eubank, S ;
Guclu, H ;
Kumar, VSA ;
Marathe, MV ;
Srinivasan, A ;
Toroczkai, Z ;
Wang, N .
NATURE, 2004, 429 (6988) :180-184
[22]  
Faloutsos Michalis, 1999, P C APPL TECHN ARCH
[23]   Network frailty and the geometry of herd immunity [J].
Ferrari, Matthew J. ;
Bansal, Shweta ;
Meyers, Lauren A. ;
Bjornstad, Ottar N. .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2006, 273 (1602) :2743-2748
[24]   A protein interaction map of Drosophila melanogaster [J].
Giot, L ;
Bader, JS ;
Brouwer, C ;
Chaudhuri, A ;
Kuang, B ;
Li, Y ;
Hao, YL ;
Ooi, CE ;
Godwin, B ;
Vitols, E ;
Vijayadamodar, G ;
Pochart, P ;
Machineni, H ;
Welsh, M ;
Kong, Y ;
Zerhusen, B ;
Malcolm, R ;
Varrone, Z ;
Collis, A ;
Minto, M ;
Burgess, S ;
McDaniel, L ;
Stimpson, E ;
Spriggs, F ;
Williams, J ;
Neurath, K ;
Ioime, N ;
Agee, M ;
Voss, E ;
Furtak, K ;
Renzulli, R ;
Aanensen, N ;
Carrolla, S ;
Bickelhaupt, E ;
Lazovatsky, Y ;
DaSilva, A ;
Zhong, J ;
Stanyon, CA ;
Finley, RL ;
White, KP ;
Braverman, M ;
Jarvie, T ;
Gold, S ;
Leach, M ;
Knight, J ;
Shimkets, RA ;
McKenna, MP ;
Chant, J ;
Rothberg, JM .
SCIENCE, 2003, 302 (5651) :1727-1736
[25]   Problems with fitting to the power-law distribution [J].
Goldstein, ML ;
Morris, SA ;
Yen, GG .
EUROPEAN PHYSICAL JOURNAL B, 2004, 41 (02) :255-258
[26]  
Grenfell BT, 2002, ECOL MONOGR, V72, P185, DOI 10.1890/0012-9615(2002)072[0185:DOMESN]2.0.CO
[27]  
2
[28]   Containing bioterrorist smallpox [J].
Halloran, ME ;
Longini, IM ;
Nizam, A ;
Yang, Y .
SCIENCE, 2002, 298 (5597) :1428-1432
[29]   Metabolic networks: enzyme function and metabolite structure [J].
Hatzimanikatis, V ;
Li, CH ;
Ionita, JA ;
Broadbelt, LJ .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2004, 14 (03) :300-306
[30]   LEAST-SQUARES ESTIMATION OF THE CONTACT RATE IN MODELS FOR THE SPREAD OF INFECTIOUS-DISEASES [J].
HEATHCOTE, CR ;
NICHOLLS, DF .
BIOMETRIKA, 1990, 77 (01) :161-168