Ozone-Based Atomic Layer Deposition of Crystalline V2O5 Films for High Performance Electrochemical Energy Storage

被引:121
作者
Chen, Xinyi [1 ,2 ]
Pomerantseva, Ekaterina [2 ,3 ]
Banerjee, Parag [1 ,2 ]
Gregorczyk, Keith [1 ,2 ]
Ghodssi, Reza [1 ,2 ,3 ]
Rubloff, Gary [1 ,2 ]
机构
[1] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[2] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA
[3] Univ Maryland, MEMS Sensors & Actuators Lab, Dept Elect & Comp Engn, College Pk, MD 20742 USA
关键词
atomic layer deposition; vanadium oxide; ozone; electrochemical energy storage; VANADIUM PENTOXIDE; THIN-FILMS; CATHODE; AL2O3; INSERTION; PROGRESS;
D O I
10.1021/cm202901z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new atomic layer deposition (ALD) process for V2O5 using ozone (O-3) as oxidant has been developed that resulted in crystalline V2O5 thin films which are single-phase and orthorhombic on various substrates (silicon, Au-coated stainless steel, and anodic aluminum oxide (AAO)) without any thermal post-treatment. Within a fairly narrow temperature window (170-185 degrees C), this low temperature process yields a growth rate of similar to 0.27 angstrom/cycle on Si. It presents good uniformity on planar substrates. Excellent conformality enables deposition into high aspect ratio (AR) nanopores (AR > 100), as needed for fabrication of three-dimensional (3D) nanostructures for next generation electrochemical energy storage devices. V2O5 films obtained using O-3-based ALD showed superior electrochemical performance in lithium cells, with initial specific discharge capacity of 142 mAh/g in the potential range of 2.6-4.0 V, as well as excellent rate capability and cycling stability. These benefits are attributed primarily to the crystallinity of the material and to fast transport through the thin active storage layers used.
引用
收藏
页码:1255 / 1261
页数:7
相关论文
共 32 条
[1]   A Raman study of the lithium insertion process in vanadium pentoxide thin films deposited by atomic layer deposition [J].
Baddour-Hadjean, R ;
Golabkan, V ;
Pereira-Ramos, JP ;
Mantoux, A ;
Lincot, D .
JOURNAL OF RAMAN SPECTROSCOPY, 2002, 33 (08) :631-638
[2]  
Badot JC, 2000, ELECTROCHEM SOLID ST, V3, P485, DOI 10.1149/1.1391187
[3]   Mixed mode, ionic-electronic diode using atomic layer deposition of V2O5 and ZnO films [J].
Banerjee, Parag ;
Chen, Xinyi ;
Gregorczyk, Keith ;
Henn-Lecordier, Laurent ;
Rubloff, Gary W. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (39) :15391-15397
[4]  
Banerjee P, 2009, NAT NANOTECHNOL, V4, P292, DOI [10.1038/nnano.2009.37, 10.1038/NNANO.2009.37]
[5]   Lithium intercalation into vanadium pentoxide: a theoretical study [J].
Braithwaite, JS ;
Catlow, CRA ;
Gale, JD ;
Harding, JH .
CHEMISTRY OF MATERIALS, 1999, 11 (08) :1990-1998
[6]   Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons [J].
Chan, Candace K. ;
Peng, Hailin ;
Twesten, Ray D. ;
Jarausch, Konrad ;
Zhang, Xiao Feng ;
Cui, Yi .
NANO LETTERS, 2007, 7 (02) :490-495
[7]   Profile Evolution for Conformal Atomic Layer Deposition over Nanotopography [J].
Cleveland, Erin R. ;
Banerjee, Parag ;
Perez, Israel ;
Lee, Sang Bok ;
Rubloff, Gary W. .
ACS NANO, 2010, 4 (08) :4637-4644
[8]   Conformality of Al2O3 and AlN Deposited by Plasma-Enhanced Atomic Layer Deposition [J].
Dendooven, J. ;
Deduytsche, D. ;
Musschoot, J. ;
Vanmeirhaeghe, R. L. ;
Detavernier, C. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (04) :G111-G116
[9]   Ozone-based atomic layer deposition of alumina from TMA: Growth, morphology, and reaction mechanism [J].
Elliott, S. D. ;
Scarel, G. ;
Wiemer, C. ;
Fanciulli, M. ;
Pavia, G. .
CHEMISTRY OF MATERIALS, 2006, 18 (16) :3764-3773
[10]   Atomic Layer Deposition: An Overview [J].
George, Steven M. .
CHEMICAL REVIEWS, 2010, 110 (01) :111-131