On finite 4D quantum field theory in non-commutative geometry

被引:123
作者
Grosse, H
Klimcik, C
Presnajder, P
机构
[1] CERN,DIV THEORY,CH-1211 GENEVA 23,SWITZERLAND
[2] COMENIUS UNIV BRATISLAVA,DEPT THEORET PHYS,SK-84215 BRATISLAVA,SLOVAKIA
关键词
D O I
10.1007/BF02099720
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The truncated 4-dimensional sphere S-4 and the action of the self-interacting scalar field on it are constructed. The path integral quantization is performed while simultaneously keeping the SO(5) symmetry and the finite number of degrees of freedom. The usual field theory UV-divergences are manifestly absent.
引用
收藏
页码:429 / 438
页数:10
相关论文
共 19 条
[1]   GRAVITY IN NONCOMMUTATIVE GEOMETRY [J].
CHAMSEDDINE, AH ;
FELDER, G ;
FROHLICH, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 155 (01) :205-217
[2]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[3]  
CONNES A, 1986, PUBL MATH IHES, V62, P257
[4]   HIGGS FIELDS AS YANG-MILLS FIELDS AND DISCRETE SYMMETRIES [J].
COQUEREAUX, R ;
ESPOSITOFARESE, G ;
VAILLANT, G .
NUCLEAR PHYSICS B, 1991, 353 (03) :689-706
[5]   NONCOMMUTATIVE DIFFERENTIAL GEOMETRY OF MATRIX ALGEBRAS [J].
DUBOISVIOLETTE, M ;
KERNER, R ;
MADORE, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (02) :316-321
[6]  
DUBOISVIOLETTE M, 1988, CR ACAD SCI I-MATH, V307, P403
[7]  
GAWEDZKI K, 1985, COMMUN MATH PHYS, V102, P1, DOI 10.1007/BF01208817
[8]   MASSLESS LATTICE PHI-4(4) THEORY - RIGOROUS CONTROL OF A RENORMALIZABLE ASYMPTOTICALLY FREE MODEL [J].
GAWEDZKI, K ;
KUPIAINEN, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 99 (02) :197-252
[9]  
GLIMM J, 1981, QUANTUM PHYSICS
[10]   A NONCOMMUTATIVE VERSION OF THE SCHWINGER MODEL [J].
GROSSE, H ;
MADORE, J .
PHYSICS LETTERS B, 1992, 283 (3-4) :218-222