Distance bounds on quantum dynamics

被引:47
作者
Lidar, Daniel A. [1 ,2 ,3 ]
Zanardi, Paolo [3 ]
Khodjasteh, Kaveh [3 ]
机构
[1] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
[2] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
[3] Univ So Calif, Ctr Quantum Informat Sci & Technol, Dept Phys, Los Angeles, CA 90089 USA
来源
PHYSICAL REVIEW A | 2008年 / 78卷 / 01期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevA.78.012308
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We derive rigorous upper bounds on the distance between quantum states in an open-system setting in terms of the operator norm between Hamiltonians describing their evolution. We illustrate our results with an example taken from protection against decoherence using dynamical decoupling.
引用
收藏
页数:7
相关论文
共 26 条
[1]   Fault-tolerant quantum computation with long-range correlated noise [J].
Aharonov, D ;
Kitaev, A ;
Preskill, J .
PHYSICAL REVIEW LETTERS, 2006, 96 (05)
[2]  
Alicki R., 2007, Volume 717 of Lecture Notes in Physics, V717
[3]  
Aliferis P, 2006, QUANTUM INF COMPUT, V6, P97
[4]  
[Anonymous], 2003, PRINCIPLES QUANTUM C
[5]  
[Anonymous], NOT AMS
[6]  
BHATIA R., 1997, MATRIX ANAL, V169
[7]  
Bratteli O., 1987, Texts Monogr. Phys.
[8]  
Breuer H-P., 2007, The Theory of Open Quantum Systems
[9]   Combined error correction techniques for quantum computing architectures [J].
Byrd, MS ;
Lidar, DA .
JOURNAL OF MODERN OPTICS, 2003, 50 (08) :1285-1297
[10]   Sufficient conditions for the convergence of the Magnus expansion [J].
Casas, Fernando .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (50) :15001-15017