Anthropogenic and forest fire pollution aerosol transported to the Arctic: observations from the POLARCAT-France spring campaign

被引:21
作者
Quennehen, B. [1 ,4 ,5 ]
Schwarzenboeck, A. [1 ]
Matsuki, A. [2 ]
Burkhart, J. F. [3 ]
Stohl, A. [3 ]
Ancellet, G. [4 ,5 ]
Law, K. S. [4 ,5 ]
机构
[1] Univ Blaise Pascal, Lab Meteorol Phys, UMR6016, CNRS, Aubiere, France
[2] Kanagawa Univ, Frontier Sci Org, Kanagawa, Japan
[3] Norwegian Inst Air Res NILU, Kjeller, Norway
[4] UPMC Univ Paris 06, CNRS INSU, LATMOS IPSL, UMR8190, Paris, France
[5] Univ Versailles St Quentin, CNRS, INSU, LATMOS,IPSL,UMR8190, Paris, France
关键词
DISPERSION MODEL FLEXPART; LONG-RANGE TRANSPORT; OPTICAL-PROPERTIES; BLACK CARBON; SOURCE IDENTIFICATION; CHEMICAL-PROPERTIES; PARTICLE NUMBER; IN-SITU; VALIDATION; EMISSIONS;
D O I
10.5194/acp-12-6437-2012
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
During the POLARCAT-France airborne measurement campaign in spring 2008, several pollution plumes transported from mid-latitude regions were encountered. The study presented here focuses on air masses from two different geographic origins (Europe and Asia) and from 2 different source types (anthropogenic pollution and forest fires). A first case study is dedicated to a European air mass, which was repeatedly sampled and analysed during three consecutive days. Thereby, the evolution of the aerosol properties (size distributions, CO mixing ratio) is characterised and related processes are discussed. In particular, the role of coagulation, condensation and cloud processing in the evolution of the Aitken and the accumulation mode particles are contrasted. A second case study focuses on European air masses impacted solely by biomass burning emissions and Asian air masses with contributions from both biomass burning and anthropogenic emissions. The analysis of aerosol modes highlight a similar behaviour for particle originating from biomass burning (from Europe as well as Asia). In comparison to the predominating aged accumulation mode in biomass burning particles, a still larger aerosol accumulation mode related to Asian anthropogenic emissions can be isolated. These findings corroborate the external mixing of such kind of aerosol size distributions. An electron microscopy study (coupled to X-ray elemental analysis) of particles illustrated soot-like inclusions in several samples. Within samples attributed to forest fire sources, the chemical signature is highly associated with the presence of potassium, which is a characteristic tracer element for biomass burning plumes. The single particle images suggest an internal mixing of sampled individual aerosol particles. Thus, particles are found externally mixed as demonstrated from particle size distributions while they appear internally mixed at the particle scale.
引用
收藏
页码:6437 / 6454
页数:18
相关论文
共 66 条
[31]  
Matsuki A., 2005, FOCUS, V5, P101
[32]   CLIMATE MODIFICATION BY ATMOSPHERIC AEROSOLS [J].
MCCORMICK, RA ;
LUDWIG, JH .
SCIENCE, 1967, 156 (3780) :1358-+
[33]   Black carbon measurements in the boundary layer over western and northern Europe [J].
McMeeking, G. R. ;
Hamburger, T. ;
Liu, D. ;
Flynn, M. ;
Morgan, W. T. ;
Northway, M. ;
Highwood, E. J. ;
Krejci, R. ;
Allan, J. D. ;
Minikin, A. ;
Coe, H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (19) :9393-9414
[34]   A study of nighttime nitrogen oxide oxidation in a large reaction chamber - The fate of NO2 N2O5, HNO3, and O-3 at different humidities [J].
Mentel, TF ;
Bleilebens, D ;
Wahner, A .
ATMOSPHERIC ENVIRONMENT, 1996, 30 (23) :4007-4020
[35]   Airborne DOAS measurements in Arctic: vertical distributions of aerosol extinction coefficient and NO2 concentration [J].
Merlaud, A. ;
Van Roozendael, M. ;
Theys, N. ;
Fayt, C. ;
Hermans, C. ;
Quennehen, B. ;
Schwarzenboeck, A. ;
Ancellet, G. ;
Pommier, M. ;
Pelon, J. ;
Burkhart, J. ;
Stohl, A. ;
De Maziere, M. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (17) :9219-9236
[36]   Establishing Lagrangian connections between observations within air masses crossing the Atlantic during the International Consortium for Atmospheric Research on Transport and Transformation experiment [J].
Methven, J. ;
Arnold, S. R. ;
Stohl, A. ;
Evans, M. J. ;
Avery, M. ;
Law, K. ;
Lewis, A. C. ;
Monks, P. S. ;
Parrish, D. D. ;
Reeves, C. E. ;
Schlager, H. ;
Atlas, E. ;
Blake, D. R. ;
Coe, H. ;
Crosier, J. ;
Flocke, F. M. ;
Holloway, J. S. ;
Hopkins, J. R. ;
McQuaid, J. ;
Purvis, R. ;
Rappengluck, B. ;
Singh, H. B. ;
Watson, N. M. ;
Whalley, L. K. ;
Williams, P. I. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D23)
[37]  
Mitchell M., 1957, J ATMOS TERR PHYS, P195
[38]   Multiwavelength Raman lidar observations of particle growth during long-range transport of forest-fire smoke in the free troposphere [J].
Mueller, D. ;
Mattis, I. ;
Ansmann, A. ;
Wandinger, U. ;
Ritter, C. ;
Kaiser, D. .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (05)
[39]   An improved infrared carbon monoxide analyser for routine measurements aboard commercial Airbus aircraft: technical validation and first scientific results of the MOZAIC III programme [J].
Nedelec, P ;
Cammas, JP ;
Thouret, V ;
Athier, G ;
Cousin, JM ;
Legrand, C ;
Abonnel, C ;
Lecoeur, F ;
Cayez, G ;
Marizy, C .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2003, 3 :1551-1564
[40]  
Pachauri R. K., 2007, CLIMAGE CHANGE 2007