Atomistic Simulation and Measurement of pH Dependent Cancer Therapeutic Interactions with Nanodiamond Carrier

被引:105
作者
Adnan, Ashfaq [6 ]
Lam, Robert [5 ]
Chen, Hanning [4 ]
Lee, Jessica [5 ]
Schaffer, Daniel J.
Barnard, Amanda S. [2 ]
Schatz, George C. [4 ]
Ho, Dean [1 ,3 ,5 ]
Liu, Wing Kam [1 ]
机构
[1] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA
[2] CSIRO Mat Sci & Engn, Clayton, Vic 3168, Australia
[3] Northwestern Univ, Robert H Lurie Comprehens Canc Ctr, Chicago, IL 60611 USA
[4] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[5] Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA
[6] Univ Texas Arlington, Dept Mech & Aerosp Engn, Arlington, TX 76019 USA
基金
美国国家科学基金会;
关键词
nanodiamond; CpHMD; doxorubicine; adsorption; drug delivery; NANOCRYSTALLINE DIAMOND; DYNAMICS; DOXORUBICIN; SURFACE; IMMOBILIZATION; ADSORPTION; ADHESION; DELIVERY; BINDING; BMP-2;
D O I
10.1021/mp1002398
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
In this work, we have combined constant-pH molecular dynamics simulations and experiments to provide a quantitative analysis of pH dependent interactions between doxorubicin hydrochloride (DOX) cancer therapeutic and faceted nanodiamond (ND) nanoparticle carriers. Our study suggests that when a mixture of faceted ND and DOX is dissolved in a solvent, the pH of this solvent plays a controlling role in the adsorption of DOX molecules on the ND. We find that the binding of DOX molecules on ND occurs only at high pH and requires at least similar to 10% of ND surface area to be fully titrated for binding to occur. As such, this study reveals important mechanistic insight underlying an ND-based pH-controlled therapeutic platform.
引用
收藏
页码:368 / 374
页数:7
相关论文
共 36 条
[1]  
Allen MP, 1987, COMPUTER SIMULATIONS, DOI DOI 10.2307/2938686
[2]   Drug delivery systems: Entering the mainstream [J].
Allen, TM ;
Cullis, PR .
SCIENCE, 2004, 303 (5665) :1818-1822
[3]   Constant-pH molecular dynamics using stochastic titration [J].
Baptista, AM ;
Teixeira, VH ;
Soares, CM .
JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (09) :4184-4200
[4]   Self-assembly in nanodiamond agglutinates [J].
Barnard, Amanda S. .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (34) :4038-4041
[5]   Crystallinity and surface electrostatics of diamond nanocrystals [J].
Barnard, Amanda S. ;
Sternberg, Michael .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (45) :4811-4819
[6]   Adhesion of protein residues to substituted (111) diamond surfaces: An insight from density functional theory and classical molecular dynamics simulations [J].
Borisenko, Konstantin B. ;
Reavy, Helen J. ;
Zhao, Qi ;
Abel, Eric W. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2008, 86A (04) :1113-1121
[7]  
Case DA., 2008, AMBER 10 University of California
[8]   Nanodiamond-Mediated Delivery of Water-Insoluble Therapeutics [J].
Chen, Mark ;
Pierstorff, Erik D. ;
Lam, Robert ;
Li, Shu-You ;
Huang, Houjin ;
Osawa, Eiji ;
Ho, Dean .
ACS NANO, 2009, 3 (07) :2016-2022
[9]  
Elimelech M., 1998, Particle deposition aggregation, measurement, modeling and simulation
[10]   Colloidal stability of modified nanodiamond particles [J].
Gibson, N. ;
Shenderova, O. ;
Luo, T. J. M. ;
Moseenkov, S. ;
Bondar, V. ;
Puzyr, A. ;
Purtov, K. ;
Fitzgerald, Z. ;
Brenner, D. W. .
DIAMOND AND RELATED MATERIALS, 2009, 18 (04) :620-626