Finite time transport in aperiodic flows

被引:180
作者
Haller, G [1 ]
Poje, AC [1 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02906 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0167-2789(98)00091-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the transport of particles in a general, two-dimensional, incompressible flow in the presence of a transient eddy, i.e., a bounded set of closed streamlines with a finite time of existence. Using quantities obtained from Eulerian observations, we provide explicit conditions for the existence of a hyperbolic structure in the how, which induces mixing between the eddy and its environment. Our results can be used directly to study finite-time transport in numerically or experimentally generated vector fields with general time-dependence. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:352 / 380
页数:29
相关论文
共 37 条
[1]   Viscous perturbations of vorticity-conserving flows and separatrix splitting [J].
Balasuriya, S ;
Jones, CKRT ;
Sandstede, B .
NONLINEARITY, 1998, 11 (01) :47-77
[2]   CHAOTIC TRANSPORT IN THE HOMOCLINIC AND HETEROCLINIC TANGLE REGIONS OF QUASI-PERIODICALLY FORCED 2-DIMENSIONAL DYNAMIC-SYSTEMS [J].
BEIGIE, D ;
LEONARD, A ;
WIGGINS, S .
NONLINEARITY, 1991, 4 (03) :775-819
[3]  
BEIGIE D, 1994, CODIMENSION 1 PARTIT
[4]  
BEIGIE D, 1992, IMA VOLUMES MATH ITS, V40, P47
[5]  
BEIGIE D, 1994, MULTIPLE SEPARATRIX
[6]  
BOWER AS, 1991, J PHYS OCEANOGR, V21, P173, DOI 10.1175/1520-0485(1991)021<0173:ASKMFM>2.0.CO
[7]  
2
[8]  
Duan JQ, 1996, J PHYS OCEANOGR, V26, P1176, DOI 10.1175/1520-0485(1996)026<1176:FEAAMJ>2.0.CO
[9]  
2
[10]  
DUTKIEWICZ S, 1994, J PHYS OCEANOGR, V24, P2418, DOI 10.1175/1520-0485(1994)024<2418:OTMEIA>2.0.CO