Finite time transport in aperiodic flows

被引:180
作者
Haller, G [1 ]
Poje, AC [1 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02906 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0167-2789(98)00091-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the transport of particles in a general, two-dimensional, incompressible flow in the presence of a transient eddy, i.e., a bounded set of closed streamlines with a finite time of existence. Using quantities obtained from Eulerian observations, we provide explicit conditions for the existence of a hyperbolic structure in the how, which induces mixing between the eddy and its environment. Our results can be used directly to study finite-time transport in numerically or experimentally generated vector fields with general time-dependence. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:352 / 380
页数:29
相关论文
共 37 条
[21]   TRANSPORT IN 3D VOLUME-PRESERVING FLOWS [J].
MACKAY, RS .
JOURNAL OF NONLINEAR SCIENCE, 1994, 4 (04) :329-354
[22]   MELNIKOV TRANSFORMS, BERNOULLI BUNDLES, AND ALMOST PERIODIC PERTURBATIONS [J].
MEYER, KR ;
SELL, GR .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 314 (01) :63-105
[23]   ON THE INTEGRABILITY AND PERTURBATION OF 3-DIMENSIONAL FLUID-FLOWS WITH SYMMETRY [J].
MEZIC, I ;
WIGGINS, S .
JOURNAL OF NONLINEAR SCIENCE, 1994, 4 (02) :157-194
[24]   Quantifying transport in numerically generated velocity fields [J].
Miller, PD ;
Jones, CKRT ;
Rogerson, AM ;
Pratt, LJ .
PHYSICA D, 1997, 110 (1-2) :105-122
[25]  
NEUFELD Z, 1997, ADVECTION CHAOTICALL
[26]  
POJE A, UNPUB J PHYS OCEANOG
[27]  
ROGERSON AM, UNPUB J PHYS OCEANOG
[28]   SECONDARY HOMOCLINIC BIFURCATION THEOREMS [J].
ROMKEDAR, V .
CHAOS, 1995, 5 (02) :385-401
[29]   HOMOCLINIC TANGLES - CLASSIFICATION AND APPLICATIONS [J].
ROMKEDAR, V .
NONLINEARITY, 1994, 7 (02) :441-473
[30]   AN ANALYTICAL STUDY OF TRANSPORT, MIXING AND CHAOS IN AN UNSTEADY VORTICAL FLOW [J].
ROMKEDAR, V ;
LEONARD, A ;
WIGGINS, S .
JOURNAL OF FLUID MECHANICS, 1990, 214 :347-394