Human kallikrein 5 (KLK5) is a member of the human kallikrein gene family of serine proteases. Preliminary results indicate that the protein, hK5, may be a potential serological marker for breast and ovarian cancer. Other studies implicate hK5 with skin desquamation and skin diseases. To gain further insights on hK5 physiological functions, we studied its substrate specificity, the regulation of its activity by various inhibitors, and identified candidate physiological substrates. After producing and purifying recombinant hK5 in yeast, we determined the k(cat)/K-m ratio of the fluorogenic substrates Gly-Pro-Arg-AMC and Gly-Pro-Lys-AMC, and showed that it has trypsin-like activity with strong preference for Arg over Lys in the P1 position. The serpins alpha(2)-antiplasmin and antithrombin were able to inhibit hK5 with an inhibition constant (k(+2)/K-i) of 1.0 x 10(-2) and 4.2 x 10(-4) M-1 min(-1), respectively. No inhibition was observed with the serpins alpha(1)-antitrypsin and alpha(1)-antichymotrypsin, although alpha(2)-macroglobulin partially inhibited hK5 at high concentrations. We also demonstrated that hK5 can efficiently digest the extracellular matrix components, collagens type I, II, III, and IV, fibronectin, and laminin. Furthermore, our results suggest that hK5 can potentially release (a) angiostatin 4.5 from plasminogen, (b) "cystatin-like domain 3" from low molecular weight kininogen, and ( c) fibrinopeptide B and peptide beta 15-42 from the B beta chain of fibrinogen. hK5 could also play a role in the regulation of the binding of plasminogen activator inhibitor 1 to vitronectin. Our findings suggest that hK5 may be implicated in tumor progression, particularly in invasion and angiogenesis, and may represent a novel therapeutic target.