Label Fusion in Atlas-Based Segmentation Using a Selective and Iterative Method for Performance Level Estimation (SIMPLE)

被引:210
作者
Langerak, Thomas Robin [1 ]
van der Heide, Uulke A. [2 ]
Kotte, Alexis N. T. J. [2 ]
Viergever, Max A. [1 ]
van Vulpen, Marco [2 ]
Pluim, Josien P. W. [1 ]
机构
[1] Univ Med Ctr Utrecht, Image Sci Inst, NL-3508 GA Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, Dept Radiotherapy, NL-3508 GA Utrecht, Netherlands
关键词
Atlas selection; atlas-based segmentation; classifier combination; SIMPLE; STAPLE; IMAGE SEGMENTATION; REGISTRATION; COMBINATION; STRATEGIES; VALIDATION;
D O I
10.1109/TMI.2010.2057442
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In a multi-atlas based segmentation procedure, propagated atlas segmentations must be combined in a label fusion process. Some current methods deal with this problem by using atlas selection to construct an atlas set either prior to or after registration. Other methods estimate the performance of propagated segmentations and use this performance as a weight in the label fusion process. This paper proposes a selective and iterative method for performance level estimation (SIMPLE), which combines both strategies in an iterative procedure. In subsequent iterations the method refines both the estimated performance and the set of selected atlases. For a dataset of 100 MR images of prostate cancer patients, we show that the results of SIMPLE are significantly better than those of several existing methods, including the STAPLE method and variants of weighted majority voting.
引用
收藏
页码:2000 / 2008
页数:9
相关论文
共 23 条
[1]   Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy [J].
Aljabar, P. ;
Heckemann, R. A. ;
Hammers, A. ;
Hajnal, J. V. ;
Rueckert, D. .
NEUROIMAGE, 2009, 46 (03) :726-738
[2]   Combination Strategies in Multi-Atlas Image Segmentation: Application to Brain MR Data [J].
Artaechevarria, Xabier ;
Munoz-Barrutia, Arrate ;
Ortiz-de-Solorzano, Carlos .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (08) :1266-1277
[3]   Generalized overlap measures for evaluation and validation in medical image analysis [J].
Crum, William R. ;
Camara, Oscar ;
Hill, Derek L. G. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (11) :1451-1461
[4]   MEASURES OF THE AMOUNT OF ECOLOGIC ASSOCIATION BETWEEN SPECIES [J].
DICE, LR .
ECOLOGY, 1945, 26 (03) :297-302
[5]   Dense image registration through MRFs and efficient linear programming [J].
Glocker, Ben ;
Komodakis, Nikos ;
Tziritas, Georgios ;
Navab, Nassir ;
Paragios, Nikos .
MEDICAL IMAGE ANALYSIS, 2008, 12 (06) :731-741
[6]   Multi-Atlas-Based Segmentation With Local Decision Fusion-Application to Cardiac and Aortic Segmentation in CT Scans [J].
Isgum, Ivana ;
Staring, Marius ;
Rutten, Annemarieke ;
Prokop, Mathias ;
Viergever, Max A. ;
van Ginneken, Brain .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (07) :1000-1010
[7]  
Jaccard P., 1901, Bulletin de la Societe Vaudoise des Sciences Naturelles, V37, P241, DOI DOI 10.5169/SEALS-266450
[8]   Sum versus vote fusion in multiple classifier systems [J].
Kittler, J ;
Alkoot, FM .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (01) :110-115
[9]   On combining classifiers [J].
Kittler, J ;
Hatef, M ;
Duin, RPW ;
Matas, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (03) :226-239
[10]   Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information [J].
Klein, Stefan ;
van der Heide, Uulke A. ;
Lips, Irene M. ;
van Vulpen, Marco ;
Staring, Marius ;
Pluim, Josien P. W. .
MEDICAL PHYSICS, 2008, 35 (04) :1407-1417