MOFA plus : a statistical framework for comprehensive integration of multi-modal single-cell data

被引:393
作者
Argelaguet, Ricard [1 ]
Arnol, Damien [1 ]
Bredikhin, Danila [2 ]
Deloro, Yonatan [1 ]
Velten, Britta [2 ,3 ]
Marioni, John C. [1 ,4 ,5 ]
Stegle, Oliver [1 ,2 ,3 ]
机构
[1] European Bioinformat Inst EMBL EBI, Hinxton CB10 1SD, Cambs, England
[2] European Mol Biol Lab EMBL, Heidelberg, Germany
[3] German Canc Res Ctr, Div Computat Genom & Syst Genet, Heidelberg, Germany
[4] Univ Cambridge, Canc Res UK Cambridge Inst, Cambridge CB2 0RE, England
[5] Wellcome Sanger Inst, Cambridge CB10 1SA, England
关键词
Single cell; Multi-omics; Data integration; Factor analysis; EMBRYONIC STEM-CELLS; DNA METHYLATION; ENHANCERS; GENOME; OMICS; LANDSCAPES; DYNAMICS;
D O I
10.1186/s13059-020-02015-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Technological advances have enabled the profiling of multiple molecular layers at single-cell resolution, assaying cells from multiple samples or conditions. Consequently, there is a growing need for computational strategies to analyze data from complex experimental designs that include multiple data modalities and multiple groups of samples. We present Multi-Omics Factor Analysis v2 (MOFA+), a statistical framework for the comprehensive and scalable integration of single-cell multi-modal data. MOFA+ reconstructs a low-dimensional representation of the data using computationally efficient variational inference and supports flexible sparsity constraints, allowing to jointly model variation across multiple sample groups and data modalities.
引用
收藏
页数:17
相关论文
共 66 条
[1]   Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity [J].
Angermueller, Christof ;
Clark, Stephen J. ;
Lee, Heather J. ;
Macaulay, Iain C. ;
Teng, Mabel J. ;
Hu, Tim Xiaoming ;
Krueger, Felix ;
Smallwood, Sebastien A. ;
Ponting, Chris P. ;
Voet, Thierry ;
Kelsey, Gavin ;
Stegle, Oliver ;
Reik, Wolf .
NATURE METHODS, 2016, 13 (03) :229-+
[2]  
[Anonymous], 2012, ARTIF INTELL
[3]  
Argelaguet R, 2020, MOFA VERSION 1 0 GIT
[4]  
Argelaguet R, 2020, MOFA VERSION 1 0
[5]   Multi-omics profiling of mouse gastrulation at single-cell resolution [J].
Argelaguet, Ricard ;
Clark, Stephen J. ;
Mohammed, Hisham ;
Stapel, L. Carine ;
Krueger, Christel ;
Kapourani, Chantriolnt-Andreas ;
Imaz-Rosshandler, Ivan ;
Lohoff, Tim ;
Xiang, Yunlong ;
Hanna, Courtney W. ;
Smallwood, Sebastien ;
Ibarra-Soria, Ximena ;
Buettner, Florian ;
Sanguinetti, Guido ;
Xie, Wei ;
Krueger, Felix ;
Gottgens, Berthold ;
Rugg-Gunn, Peter J. ;
Kelsey, Gavin ;
Dean, Wendy ;
Nichols, Jennifer ;
Stegle, Oliver ;
Marioni, John C. ;
Reik, Wolf .
NATURE, 2019, 576 (7787) :487-+
[6]   Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets [J].
Argelaguet, Ricard ;
Velten, Britta ;
Arnol, Damien ;
Dietrich, Sascha ;
Zenz, Thorsten ;
Marioni, John C. ;
Buettner, Florian ;
Huber, Wolfgang ;
Stegle, Oliver .
MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
[7]  
Barkas Nikolas., 2018, bioRxiv, P460246, DOI [DOI 10.1101/460246, 10.1101/460246]
[8]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[9]   Single-cell multiomics sequencing and analyses of human colorectal cancer [J].
Bian, Shuhui ;
Hou, Yu ;
Zhou, Xin ;
Li, Xianlong ;
Yong, Jun ;
Wang, Yicheng ;
Wang, Wendong ;
Yan, Jia ;
Hu, Boqiang ;
Guo, Hongshan ;
Wang, Jilian ;
Gao, Shuai ;
Mao, Yunuo ;
Dong, Ji ;
Zhu, Ping ;
Xiu, Dianrong ;
Yan, Liying ;
Wen, Lu ;
Qiao, Jie ;
Tang, Fuchou ;
Fu, Wei .
SCIENCE, 2018, 362 (6418) :1060-+
[10]   Variational Inference: A Review for Statisticians [J].
Blei, David M. ;
Kucukelbir, Alp ;
McAuliffe, Jon D. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) :859-877