A family of mimetic finite difference methods on polygonal and polyhedral meshes

被引:298
作者
Brezzi, F
Lipnikov, K [1 ]
Simoncini, V
机构
[1] Univ Pavia, Dept Math, Pavia, Italy
[2] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[3] Univ Bologna, Dipartimento Matemat, I-40127 Bologna, Italy
[4] IMATI CNR, Pavia, Italy
[5] CIRSA, Ravenna, Italy
关键词
finite difference; compatible discretizations; polyhedral meshes;
D O I
10.1142/S0218202505000832
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A family of inexpensive discretization schemes for diffusion problems on unstructured polygonal and polyhedral meshes is introduced. The material properties are described by a full tensor. The theoretical results are confirmed with numerical experiments.
引用
收藏
页码:1533 / 1551
页数:19
相关论文
共 17 条
[1]  
[Anonymous], 1965, STRESS ANAL
[2]  
Arbogast T, 1998, SIAM J SCI COMPUT, V19, P404, DOI 10.1137/S1064827594264545
[3]   MIXED AND NONCONFORMING FINITE-ELEMENT METHODS - IMPLEMENTATION, POSTPROCESSING AND ERROR-ESTIMATES [J].
ARNOLD, DN ;
BREZZI, F .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (01) :7-32
[4]  
BREZZI F, IN PRESS SIAM J NUME
[5]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[6]  
GARIMELLA R, 2004, P 13 INT MESH ROUNDT, V2, P1196
[7]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[8]   The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials [J].
Hyman, J ;
Shashkov, M ;
Steinberg, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 132 (01) :130-148
[9]   Approximation of boundary conditions for mimetic finite-difference methods [J].
Hyman, JM ;
Shashkov, M .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 36 (05) :79-99
[10]   The mimetic finite difference method on polygonal meshes for diffusion-type problems [J].
Kuznetsov, Y ;
Lipnikov, K ;
Shashkov, M .
COMPUTATIONAL GEOSCIENCES, 2004, 8 (04) :301-324