Dielectrophoresis: Using inhomogeneous AC electrical fields to separate and manipulate cells

被引:239
作者
Pethig, R
机构
[1] Institute of Molecular and Biomolecular Electronics, University of Wales, Bangor
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
bacteria; bioparticles; cell fractionation; dielectric polarizability; microelectrodes; selective separation; FLUID INTEGRATED-CIRCUIT; COLLOIDAL PARTICLES; FLOW FRACTIONATION; BLOOD; LEVITATION; BEHAVIOR; MICROELECTRODES; PROTOPLASTS; TRAPS;
D O I
10.3109/07388559609147425
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Dielectrophoresis is the motion of particles caused by electrical polarization effects in inhomogeneous (nonuniform) electric fields. Unlike electrophoresis, the particles do not require a net electrical charge for motion to occur and AC rather than DC fields are employed to exploit the dielectric properties of the particles. Factors controlling the effective dielectric properties of cells and microorganisms include electrical double layers associated with surface charges, the conductivity and permittivity of their membranes and any cell walls, and their morphologies and structural architectures. In recent years, several laboratories have developed separation and manipulation techniques for cells and microorganisms based on dielectrophoresis, using both static and traveling AC fields. In this article, the basic physical factors influencing the dielectrophoretic behavior of particles are outlined, and ways in which these can be employed to achieve selective separation of cells and microorganisms are described.
引用
收藏
页码:331 / 348
页数:18
相关论文
共 56 条
[1]  
[Anonymous], 1994, COLLOIDAL DOMAIN WHE
[2]   SEPARATION OF HUMAN BREAST-CANCER CELLS FROM BLOOD BY DIFFERENTIAL DIELECTRIC AFFINITY [J].
BECKER, FF ;
WANG, XB ;
HUANG, Y ;
PETHIG, R ;
VYKOUKAL, J ;
GASCOYNE, PRC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (03) :860-864
[3]   THE REMOVAL OF HUMAN LEUKEMIA-CELLS FROM BLOOD USING INTERDIGITATED MICROELECTRODES [J].
BECKER, FF ;
WANG, XB ;
HUANG, Y ;
PETHIG, R ;
VYKOUKAL, J ;
GASCOYNE, PRC .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1994, 27 (12) :2659-2662
[4]   Model-independent aspects of field-flow fractionation theory [J].
Buffham, BA .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1996, 181 (02) :490-502
[5]  
Burt JPH, 1996, ANN BIOL CLIN-PARIS, V54, P253
[6]  
BURT JPH, 1995, INT PROGR PRECISION, P476
[7]   ELECTRICAL FIELD-FLOW FRACTIONATION IN PARTICLE SEPARATION .1. MONODISPERSE STANDARDS [J].
CALDWELL, KD ;
GAO, YS .
ANALYTICAL CHEMISTRY, 1993, 65 (13) :1764-1772
[8]   SHEAR-STRESS EFFECTS ON HUMAN T-CELL FUNCTION [J].
CHITTUR, KK ;
MCINTIRE, LV ;
RICH, RR .
BIOTECHNOLOGY PROGRESS, 1988, 4 (02) :89-96
[9]   MANIPULATION OF SAMPLE FRACTIONS ON A CAPILLARY ELECTROPHORESIS CHIP [J].
EFFENHAUSER, CS ;
MANZ, A ;
WIDMER, HM .
ANALYTICAL CHEMISTRY, 1995, 67 (13) :2284-2287
[10]  
FUHR G, 1994, NATURWISSENSCHAFTEN, V81, P528