VE-cadherin simultaneously stimulates and inhibits cell proliferation by altering cytoskeletal structure and tension

被引:85
作者
Nelson, CM
Chen, CS
机构
[1] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Sch Med, Dept Oncol, Baltimore, MD 21205 USA
关键词
cell shape; microfabrication; intercellular adhesion; adherens junctions;
D O I
10.1242/jcs.00680
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Engagement of vascular endothelial (VE)-cadherin leads to the cessation of proliferation commonly known as 'contact inhibition'. We show that VE-cadherin inhibits growth by mediating changes in cell adhesion to the extracellular matrix. Increasing cell-cell contact decreased cell spreading and proliferation, which was reversed by blocking engagement of VE-cadherin. Using a new system to prevent the cadherin-induced changes in cell spreading, we revealed that VE-cadherin paradoxically increased proliferation. Treating cells with inhibitors of PKC and MEK abrogated the stimulatory signal at concentrations that disrupted the formation of actin fibers across the cell-cell contact. Directly disrupting actin fibers, blocking actin-myosin-generated tension, or inhibiting signaling through Rho specifically inhibited the cadherin-induced proliferative signal. By progressively altering the degree to which cell-cell contact inhibited cell spreading, we show that cell-cell contact ultimately increased or decreased the overall proliferation rate of the population by differentially shifting the balance between the two opposing proliferative cues. The existence of opposing growth signals induced by VE-cadherin that are both mediated through crosstalk with cytoskeletal structure highlights the complex interplay of mechanical and chemical signals with which cells navigate in their physical microenviromnent.
引用
收藏
页码:3571 / 3581
页数:11
相关论文
共 46 条
[1]   Mechanisms of epithelial cell-cell adhesion and cell compaction revealed by high-resolution tracking of E-cadherin-green fluorescent protein [J].
Adams, CL ;
Chen, YT ;
Smith, SJ ;
Nelson, WJ .
JOURNAL OF CELL BIOLOGY, 1998, 142 (04) :1105-1119
[2]   Coordinate signaling by integrins and receptor tyrosine kinases in the regulation of G1 phase cell-cycle progression [J].
Assoian, RK ;
Schwartz, MA .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2001, 11 (01) :48-53
[3]   Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways [J].
Barth, AI ;
Nathke, IS ;
Nelson, WJ .
CURRENT OPINION IN CELL BIOLOGY, 1997, 9 (05) :683-690
[4]   Epithelial cell shape: Cadherins and small GTPases [J].
Braga, V .
EXPERIMENTAL CELL RESEARCH, 2000, 261 (01) :83-90
[5]   FUNCTIONAL-PROPERTIES OF HUMAN VASCULAR ENDOTHELIAL CADHERIN (7B4/CADHERIN-5), AN ENDOTHELIUM-SPECIFIC CADHERIN [J].
BREVIARIO, F ;
CAVEDA, L ;
CORADA, M ;
MARTINPADURA, I ;
NAVARRO, P ;
GOLAY, J ;
INTRONA, M ;
GULINO, D ;
LAMPUGNANI, MG ;
DEJANA, E .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 1995, 15 (08) :1229-1239
[6]   Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis [J].
Carmeliet, P ;
Lampugnani, MG ;
Moons, L ;
Breviario, F ;
Compernolle, V ;
Bono, F ;
Balconi, G ;
Spagnuolo, R ;
Oosthuyse, B ;
Dewerchin, M ;
Zanetti, A ;
Angellilo, A ;
Mattot, V ;
Nuyens, D ;
Lutgens, E ;
Clotman, F ;
de Ruiter, MC ;
Gittenberger-de Groot, A ;
Poelmann, R ;
Lupu, F ;
Herbert, JM ;
Collen, D ;
Dejana, E .
CELL, 1999, 98 (02) :147-157
[7]   Angiogenesis in cancer and other diseases [J].
Carmeliet, P ;
Jain, RK .
NATURE, 2000, 407 (6801) :249-257
[8]  
Castilla MA, 1999, CIRC RES, V85, P1132
[9]   Inhibition of cultured cell growth by vascular endothelial cadherin (Cadherin-5 VE-cadherin) [J].
Caveda, L ;
MartinPadura, L ;
Navarro, P ;
Breviario, F ;
Corada, M ;
Gulino, D ;
Lampugnani, MG ;
Dejana, E .
JOURNAL OF CLINICAL INVESTIGATION, 1996, 98 (04) :886-893
[10]   Cadherin-mediated regulation of microtubule dynamics [J].
Chausovsky, A ;
Bershadsky, AD ;
Borisy, GG .
NATURE CELL BIOLOGY, 2000, 2 (11) :797-804