The Saccharomyces cerevisiae chitinase, encoded by the CTS1-2 gene, confers antifungal activity against Botrytis cinerea to transgenic tobacco

被引:37
作者
Carstens, M [1 ]
Vivier, MA [1 ]
Pretorius, IS [1 ]
机构
[1] Univ Stellenbosch, Inst Wine Biotechnol, Dept Viticulture & Oenol, ZA-7602 Stellenbosch, South Africa
基金
新加坡国家研究基金会;
关键词
antifungal activity; Botrytis cinerea; chitinase; Saccharomyces cerevisiae; transgenic tobacco;
D O I
10.1023/A:1024220023057
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The Saccharomyces cerevisiae chitinase, encoded by the CTS1-2 gene has recently been confirmed by in vitro tests to possess antifungal abilities. In this study, the CTS1-2 gene has been evaluated for its in planta antifungal activity by constitutive overexpression in tobacco plants to assess its potential to increase the plant's defence against fungal pathogens. Transgenic tobacco plants, generated by Agrobacterium-mediated transformation, showed stable integration and inheritance of the transgene. Northern blot analyses conducted on the transgenic tobacco plants confirmed transgene expression. Leaf extracts from the transgenic lines inhibited Botrytis cinerea spore germination and hyphal growth by up to 70% in a quantitative in vitro assay, leading to severe physical damage on the hyphae. Several of the F-1 progeny lines were challenged with the fungal pathogen, B. cinerea, in a detached leaf infection assay, showing a decrease in susceptibility ranging from 50 to 70%. The plant lines that showed increased disease tolerance were also shown to have higher chitinase activities.
引用
收藏
页码:497 / 508
页数:12
相关论文
共 29 条
[1]  
Agrios GN., 1997, PLANT PATHOL, V4, P93, DOI [10.1007/BF03213691, DOI 10.1007/BF03213691]
[2]   Rapid evolution in plant chitinases: Molecular targets of selection in plant-pathogen coevolution [J].
Bishop, JG ;
Dean, AM ;
Mitchell-Olds, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (10) :5322-5327
[3]  
BOWLES DJ, 1990, ANNU REV BIOCHEM, V59, P873, DOI 10.1146/annurev.bi.59.070190.004301
[4]   TRANSGENIC PLANTS WITH ENHANCED RESISTANCE TO THE FUNGAL PATHOGEN RHIZOCTONIA-SOLANI [J].
BROGLIE, K ;
CHET, I ;
HOLLIDAY, M ;
CRESSMAN, R ;
BIDDLE, P ;
KNOWLTON, S ;
MAUVAIS, CJ ;
BROGLIE, R .
SCIENCE, 1991, 254 (5035) :1194-1197
[5]  
CABIB E, 1987, ADV ENZYMOL RAMB, V59, P59
[6]   BIOLOGICAL-CONTROL OF FUNGAL PATHOGENS [J].
CHET, I ;
INBAR, J .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 1994, 48 (01) :37-43
[7]  
CHET I, 1997, FUNGAL BIOTECHNOLOGY
[8]   CHITIN SYNTHESIS AND DEGRADATION AS TARGETS FOR PESTICIDE ACTION [J].
COHEN, E .
ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY, 1993, 22 (1-2) :245-261
[9]   The molecular biology of chitin digestion [J].
Cohen-Kupiec, R ;
Chet, I .
CURRENT OPINION IN BIOTECHNOLOGY, 1998, 9 (03) :270-277
[10]   Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars [J].
Datta, K ;
Tu, JM ;
Oliva, N ;
Ona, I ;
Velazhahan, R ;
Mew, TW ;
Muthukrishnan, S ;
Datta, SK .
PLANT SCIENCE, 2001, 160 (03) :405-414