The mitochondrial complex I inhibitor annonacin is toxic to mesencephalic dopaminergic neurons by impairment of energy metabolism

被引:134
作者
Lannuzel, A [1 ]
Michel, PP
Höglinger, GU
Champy, P
Jousset, A
Medja, F
Lombès, A
Darios, F
Gleye, C
Laurens, A
Hocquemiller, R
Hirsch, EC
Ruberg, M
机构
[1] CHU Antilles Guyane, Dept Neurol, BP 465, F-97159 Pointe a Pitre, Guadeloupe, France
[2] Hop La Pitie Salpetriere, INSERM, U289, Paris, France
[3] Fac Pharm Chatenay Malabry, Lab Pharmacognosie, CNRS, UPRES A8076, Chatenay Malabry, France
[4] INSERM, U458, Pointe a Pitre, Guadeloupe, France
[5] Hop La Pitie Salpetriere, INSERM, U582, Paris, France
关键词
movement disorders; Parkinsonism; neurotoxicology; neuronal death;
D O I
10.1016/S0306-4522(03)00441-X
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The death of dopaminergic neurons induced by systemic administration of mitochondrial respiratory chain complex I inhibitors such as 1-methyl-4-phenylpyridinium (MPP+; given as the prodrug 1-methyl-1,2,3,6-tetrahydropyridine) or the pesticide rotenone have raised the question as to whether this family of compounds are the cause of some forms of Parkinsonism. We have examined the neurotoxic potential of another complex I inhibitor, annonacin, the major acetogenin of Annona muricata (soursop), a tropical plant suspected to be the cause of an atypical form of Parkinson disease in the French West Indies (Guadeloupe). When added to mesencephalic cultures for 24 h, annonacin was much more potent than MPP+ (effective concentration [EC50] = 0.018 versus 1.9 muM) and as effective as rotenone (EC50 = 0.034 muM) in killing dopaminergic neurons. The uptake of [H-3]-dopamine used as an index of dopaminergic cell function was similarly reduced. Toxic effects were seen at lower concentrations when the incubation time was extended by several days whereas withdrawal of the toxin after a short-term exposure (<6 h) arrested cell demise. Unlike MPP+ but similar to rotenone, the acetogenin also reduced the survival of non-dopaminergic neurons. Neuronal cell death was not excitotoxic and occurred independently of free radical production. Raising the concentrations of either glucose or mannose in the presence of annonacin restored to a large extent intracellular ATP synthesis and prevented neuronal cell demise. Deoxyglucose reversed the effects of both glucose and mannose. Other hexoses such as galactose and fructose were not protective. Attempts to restore oxidative phosphorylation with lactate or pyruvate failed to provide protection to dopaminergic neurons whereas idoacetate, an inhibitor of glycolysis, inhibited the survival promoting effects of glucose and mannose indicating that these two hexoses acted independently of mitochondria by stimulating glycolysis. In conclusion, our study demonstrates that annonacin promotes dopaminergic neuronal death by impairment of energy production. It also underlines the need to address its possible role in the etiology of some atypical forms of Parkinsonism in Guadeloupe. (C) 2003 IBRO. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:287 / 296
页数:10
相关论文
共 52 条
[1]   Annonaceous acetogenins: Recent progress [J].
Alali, FQ ;
Liu, XX ;
McLaughlin, JL .
JOURNAL OF NATURAL PRODUCTS, 1999, 62 (03) :504-540
[2]   1-METHYL-4-(2'-ETHYLPHENYL)-1,2,3,6-TETRAHYDROPYRIDINE-INDUCED TOXICITY IN PC12 CELLS IS ENHANCED BY PREVENTING GLYCOLYSIS [J].
BASMA, AN ;
HEIKKILA, RE ;
SAPORITO, MS ;
PHILBERT, M ;
GELLER, HM ;
NICKLAS, WJ .
JOURNAL OF NEUROCHEMISTRY, 1992, 58 (03) :1052-1059
[3]  
BELL GI, 1993, J BIOL CHEM, V268, P19161
[4]   Chronic systemic pesticide exposure reproduces features of Parkinson's disease [J].
Betarbet, R ;
Sherer, TB ;
MacKenzie, G ;
Garcia-Osuna, M ;
Panov, AV ;
Greenamyre, JT .
NATURE NEUROSCIENCE, 2000, 3 (12) :1301-1306
[5]   Possible relation of atypical parkinsonism in the French West Indies with consumption of tropical plants: a case-control study [J].
Caparros-Lefebvre, D ;
Elbaz, A .
LANCET, 1999, 354 (9175) :281-286
[6]   Guadeloupean parkinsonism: a cluster of progressive supranuclear palsy-like tauopathy [J].
Caparros-Lefebvre, D ;
Sergeant, N ;
Lees, A ;
Camuzat, A ;
Daniel, S ;
Lannuzel, A ;
Brice, A ;
Tolosa, E ;
Delacourte, A ;
Duyckaerts, C .
BRAIN, 2002, 125 :801-811
[7]  
CAVE A, 1997, PROGR CHEM ORGANIC N, P81
[8]  
CHAMPY P, 2002, FENS ABSTR A, V91, P4
[9]  
Chaudhuri KR, 2000, MOVEMENT DISORD, V15, P18, DOI 10.1002/1531-8257(200001)15:1<18::AID-MDS1005>3.0.CO
[10]  
2-Z