Kernel based partially linear models and nonlinear identification

被引:71
作者
Espinoza, M [1 ]
Suykens, JAK [1 ]
De Moor, B [1 ]
机构
[1] Katholieke Univ Leuven, ESAT, SCD, Dept Elect Engn, B-3001 Heverlee, Belgium
关键词
kernels; least squares support vector machine (LS-SVM); nonlinear system identification; partially linear models;
D O I
10.1109/TAC.2005.856656
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note, we propose partially linear models with least squares support vector machines (LS-SVMs) for nonlinear ARX models. We illustrate how full black-box models can be improved when prior information about model structure is available. A real-life example, based on the Silverbox benchmark data, shows significant improvements in the generalization ability of the structured model with respect to the full black-box model, reflected also by a reduction in the effective number of parameters.
引用
收藏
页码:1602 / 1606
页数:5
相关论文
共 18 条
[11]   ROOT-N-CONSISTENT SEMIPARAMETRIC REGRESSION [J].
ROBINSON, PM .
ECONOMETRICA, 1988, 56 (04) :931-954
[12]  
SCHOUKENS J, 2003, AUTOMATICA, V39
[13]   Nonlinear black-box modeling in system identification: A unified overview [J].
Sjoberg, J ;
Zhang, QH ;
Ljung, L ;
Benveniste, A ;
Delyon, B ;
Glorennec, PY ;
Hjalmarsson, H ;
Juditsky, A .
AUTOMATICA, 1995, 31 (12) :1691-1724
[14]  
SPECKMAN P, 1988, J R STAT SOC B, V50
[15]  
Suykens J, 2002, Least squares support vector machine, DOI DOI 10.1142/9789812776655_0003
[16]  
Vapnik V.N, 1998, Statistical learning theory
[17]  
Wahba G., 1990, SPLINE MODELS OBSERV
[18]  
Yu Y, 1998, NONLINEAR MODELING, P119