Engineering stable peptide toxins by means of backbone cyclization:: Stabilization of the α-conotoxin MII

被引:197
作者
Clark, RJ
Fischer, H
Dempster, L
Daly, NL
Rosengren, KJ
Nevin, ST
Meunier, FA
Adams, DJ
Craik, DJ [1 ]
机构
[1] Univ Queensland, Inst Mol Biosci, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Sch Biomed Sci, Brisbane, Qld 4072, Australia
关键词
conotoxins; drug delivery; molecular engineering;
D O I
10.1073/pnas.0504613102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conotoxins (CTXs), with their exquisite specificity and potency, have recently created much excitement as drug leads. However, like most peptides, their beneficial activities may potentially be undermined by susceptibility to proteolysis in vivo. By cyclizing the alpha-CTX MII by using a range of linkers, we have engineered peptides that preserve their full activity but have greatly improved resistance to proteolytic degradation. The cyclic MII analogue containing a seven-residue linker joining the N and C termini was as active and selective as the native peptide for native and recombinant neuronal nicotinic acetylcholine receptor subtypes present in bovine chromaffin cells and expressed in Xerl oocytes, respectively. Furthermore, its resistance to proteolysis against a specific protease and in human plasma was significantly improved. More generally, to our knowledge, this report is the first on the cyclization of disulfide-rich toxins. Cyclization strategies represent an approach for stabilizing bioactive peptides while keeping their full potencies and should boost applications of peptide-based drugs in human medicine.
引用
收藏
页码:13767 / 13772
页数:6
相关论文
共 33 条
[1]  
Adams DJ, 1999, DRUG DEVELOP RES, V46, P219
[2]   Converting a peptide into a drug: Strategies to improve stability and bioavailability [J].
Adessi, C ;
Soto, C .
CURRENT MEDICINAL CHEMISTRY, 2002, 9 (09) :963-978
[3]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[4]   New applications of simulated annealing in X-ray crystallography and solution NMR [J].
Brunger, AT ;
Adams, PD ;
Rice, LM .
STRUCTURE, 1997, 5 (03) :325-336
[5]   A new alpha-conotoxin which targets alpha 3 beta 2 nicotinic acetylcholine receptors [J].
Cartier, GE ;
Yoshikami, DJ ;
Gray, WR ;
Luo, SQ ;
Olivera, BM ;
McIntosh, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (13) :7522-7528
[6]   Native-state hydrogen-exchange studies of a fragment complex can provide structural information about the isolated fragments [J].
Chakshusmathi, G ;
Ratnaparkhi, GS ;
Madhu, PK ;
Varadarajan, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (14) :7899-7904
[7]   Squash inhibitors: From structural motifs to macrocyclic knottins [J].
Chiche, L ;
Heitz, A ;
Gelly, JC ;
Gracy, J ;
Chau, PTT ;
Ha, PT ;
Hernandez, JF ;
Le-Nguyen, D .
CURRENT PROTEIN & PEPTIDE SCIENCE, 2004, 5 (05) :341-349
[8]   Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif [J].
Craik, DJ ;
Daly, NL ;
Bond, T ;
Waine, C .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 294 (05) :1327-1336
[9]   Development of novel antibacterial peptides that kill resistant isolates [J].
Cudic, M ;
Condie, BA ;
Weiner, DJ ;
Lysenko, ES ;
Xiang, ZQ ;
Insug, O ;
Bulet, P ;
Otvos, L .
PEPTIDES, 2002, 23 (12) :2071-2083
[10]   SYNTHESIS OF PROTEINS BY NATIVE CHEMICAL LIGATION [J].
DAWSON, PE ;
MUIR, TW ;
CLARKLEWIS, I ;
KENT, SBH .
SCIENCE, 1994, 266 (5186) :776-779