State of the art direct 13C and indirect 1H-[13C] NMR spectroscopy in vivo. A practical guide

被引:86
作者
de Graaf, Robin A. [1 ]
Rothman, Douglas L. [1 ]
Behar, Kevin L. [2 ]
机构
[1] Yale Univ, Sch Med, Magnet Resonance Res Ctr, Dept Diagnost Radiol, New Haven, CT 06520 USA
[2] Yale Univ, Sch Med, Magnet Resonance Res Ctr, Dept Psychiat, New Haven, CT 06520 USA
关键词
NMR spectroscopy; direct C-13 detection; indirect H-1-[C-13] detection; broadband decoupling; RF power deposition; metabolism; metabolic modeling; BRAIN IN-VIVO; NUCLEAR-MAGNETIC-RESONANCE; KETOGLUTARATE GLUTAMATE EXCHANGE; CEREBRAL GLUCOSE-UTILIZATION; COMPOSITE PULSE SEQUENCES; RAT-BRAIN; POLARIZATION TRANSFER; POPULATION-INVERSION; GLYCOGEN-METABOLISM; VOLUME COIL;
D O I
10.1002/nbm.1761
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Carbon-13 NMR spectroscopy in combination with C-13-labeled substrate infusion is a powerful technique for measuring a large number of metabolic fluxes noninvasively in vivo. It has been used to quantify glycogen synthesis rates, establish quantitative relationships between energy metabolism and neurotransmission, and evaluate the importance of different substrates. Measurements can, in principle, be performed through direct C-13 NMR detection or via indirect H-1-[C-13] NMR detection of the protons attached to C-13 nuclei. The choice of detection scheme and pulse sequence depends on the magnetic field strength, whereas substrate selection depends on metabolic pathways. C-13 NMR spectroscopy remains a challenging technique that requires several nonstandard hardware modifications, infusion of C-13-labeled substrates, and sophisticated processing and metabolic modeling. In this study, the various aspects of direct C-13 and indirect H-1-[C-13] NMR are reviewed with the aim of providing a practical guide. Copyright (C) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:958 / 972
页数:15
相关论文
共 79 条
[31]  
GRUETTER R, 1994, J NEUROCHEM, V63, P1377
[32]   A mathematical model of compartmentalized neurotransmitter metabolism in the human brain [J].
Gruetter, R ;
Seaquist, ER ;
Ugrubil, K .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2001, 281 (01) :E100-E112
[33]   Toward dynamic isotopomer analysis in the rat brain in vivo:: automatic quantitation of 13C NMR spectra using LCModel [J].
Henry, PG ;
Öz, G ;
Provencher, S ;
Gruetter, R .
NMR IN BIOMEDICINE, 2003, 16 (6-7) :400-412
[34]   GRADIENT-ENHANCED PROTON-DETECTED HETERONUCLEAR MULTIPLE-QUANTUM COHERENCE SPECTROSCOPY [J].
HURD, RE ;
JOHN, BK .
JOURNAL OF MAGNETIC RESONANCE, 1991, 91 (03) :648-653
[35]   SELECTIVE, IN-VIVO OBSERVATION OF [5-N-15]GLUTAMINE AMIDE PROTONS IN RAT-BRAIN BY H-1-N-15 HETERONUCLEAR MULTIPLE-QUANTUM-COHERENCE TRANSFER NMR [J].
KANAMORI, K ;
ROSS, BD ;
TROPP, J .
JOURNAL OF MAGNETIC RESONANCE SERIES B, 1995, 107 (02) :107-115
[36]   SYMMETRICAL COMPOSITE PULSE SEQUENCES FOR NMR POPULATION-INVERSION .1. COMPENSATION OF RADIOFREQUENCY FIELD INHOMOGENEITY [J].
LEVITT, MH .
JOURNAL OF MAGNETIC RESONANCE, 1982, 48 (02) :234-264
[37]   SYMMETRICAL COMPOSITE PULSE SEQUENCES FOR NMR POPULATION-INVERSION .2. COMPENSATION OF RESONANCE OFFSET [J].
LEVITT, MH .
JOURNAL OF MAGNETIC RESONANCE, 1982, 50 (01) :95-110
[38]   COMPOSITE PULSE DECOUPLING [J].
LEVITT, MH ;
FREEMAN, R .
JOURNAL OF MAGNETIC RESONANCE, 1981, 43 (03) :502-507
[39]   Novel strategy for cerebral 13C MRS using very low RF power for proton decoupling [J].
Li, Shizhe ;
Yang, Jehoon ;
Shen, Jun .
MAGNETIC RESONANCE IN MEDICINE, 2007, 57 (02) :265-271
[40]   13C MRS of occipital and frontal lobes at 3 T using a volume coil for stochastic proton decoupling [J].
Li, Shizhe ;
Zhang, Yan ;
Wang, Shumin ;
Araneta, Maria Ferraris ;
Johnson, Christopher S. ;
Xiang, Yun ;
Innis, Robert B. ;
Shen, Jun .
NMR IN BIOMEDICINE, 2010, 23 (08) :977-985