The proton transfer mechanism between aqueous Bronsted acids and bases, forming an encounter pair, has been studied in real time with ultrafast infrared spectroscopy. The transient intermediacy of a hydrated proton, formed by ultrafast dissociation from an optically triggered photoacid proton donor ROH, is implicated by the appearance of an infrared absorption marker band before protonation of the base, B-. Thus, proton exchange between an acid and a base in aqueous solution is shown to proceed by a sequential, von Grotthuss-type, proton-hopping mechanism through water bridges. The spectra suggest a hydronium cation H3O+ structure for the intermediate, stabilized in the Eigen configuration in the ionic complex RO-center dot center dot center dot H3O+center dot center dot center dot B-.