Predicting air quality: Improvements through advanced methods to integrate models and measurements

被引:109
作者
Carmichael, Gregory R. [1 ]
Sandu, Adrian [2 ]
Chai, Tianfeng [1 ]
Daescu, Dacian N. [3 ]
Constantinescu, Emil M. [2 ]
Tang, Youhua [1 ]
机构
[1] Univ Iowa, CGRER, Iowa City, IA 52242 USA
[2] Virginia Polytech Inst & State Univ, Dept Comp Sci, Blacksburg, VA 24061 USA
[3] Portland State Univ, Dept Math & Stat, Portland, OR 97207 USA
基金
美国海洋和大气管理局; 美国国家航空航天局; 美国国家科学基金会;
关键词
air quality forecasting; data assimilation; ozone pollution;
D O I
10.1016/j.jcp.2007.02.024
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Air quality prediction plays an important role in the management of our environment. Computational power and efficiencies have advanced to the point where chemical transport models can predict pollution in an urban air shed with spatial resolution less than a kilometer, and cover the globe with a horizontal resolution of less than 50 km. Predicting air quality remains a challenge due to the complexity of the governing processes and the strong coupling across scales. While air quality prediction is closely aligned with weather prediction, there are important differences, including the role of pollution emissions and their associated large uncertainties. Improvements in air quality prediction require a close integration of observations. As more atmospheric chemical observations become available chemical data assimilation is expected to play an essential role in air quality forecasting. In this paper advances in air quality forecasting are discussed with an emphasis on data assimilation. Applications of the four-dimensional variational method (4D-Var) and the ensemble Kalman filter (EnKF) approach are presented and the computation challenges are discussed. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:3540 / 3571
页数:32
相关论文
共 149 条
[1]   A comparative study of the performance of high resolution advection schemes in the context of data assimilation [J].
Akella, S. ;
Navon, I. M. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2006, 51 (07) :719-748
[2]  
Anderson JL, 2001, MON WEATHER REV, V129, P2884, DOI 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO
[3]  
2
[4]  
Anderson JL, 1999, MON WEATHER REV, V127, P2741, DOI 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO
[5]  
2
[6]  
[Anonymous], 1995, ADJOINT EQUATIONS AN, DOI DOI 10.1007/978-94-017-0621-6
[7]   Top-down estimates of global CO sources using MOPITT measurements [J].
Arellano, AF ;
Kasibhatla, PS ;
Giglio, L ;
van der Werf, GR ;
Randerson, JT .
GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (01) :L011041-5
[8]   Data assimilation of local model error forecasts in a deterministic model [J].
Babovic, V ;
Fuhrman, DR .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2002, 39 (10) :887-918
[9]   Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling [J].
Bates, T. S. ;
Anderson, T. L. ;
Baynard, T. ;
Bond, T. ;
Boucher, O. ;
Carmichael, G. ;
Clarke, A. ;
Erlick, C. ;
Guo, H. ;
Horowitz, L. ;
Howell, S. ;
Kulkarni, S. ;
Maring, H. ;
McComiskey, A. ;
Middlebrook, A. ;
Noone, K. ;
O'Dowd, C. D. ;
Ogren, J. ;
Penner, J. ;
Quinn, P. K. ;
Ravishankara, A. R. ;
Savoie, D. L. ;
Schwartz, S. E. ;
Shinozuka, Y. ;
Tang, Y. ;
Weber, R. J. ;
Wu, Y. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :1657-1732
[10]  
Bergot T, 2002, Q J ROY METEOR SOC, V128, P1689, DOI 10.1002/qj.200212858315