Model-Driven Engineering of RNA Devices to Quantitatively Program Gene Expression

被引:142
作者
Carothers, James M. [1 ,2 ]
Goler, Jonathan A. [3 ,4 ]
Juminaga, Darmawi [1 ,2 ]
Keasling, Jay D. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA
[2] Joint Bioenergy Inst, Emeryville, CA 95608 USA
[3] Univ Calif Berkeley, Synthet Biol Engn Res Ctr, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Chem & Biomol Engn, Lawrence Berkeley Natl Lab, Berkeley & Phys Biosci Div, Berkeley, CA 94720 USA
关键词
SYNTHETIC BIOLOGY; RIBOZYMES; MOLECULES;
D O I
10.1126/science.1212209
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The models and simulation tools available to design functionally complex synthetic biological devices are very limited. We formulated a design-driven approach that used mechanistic modeling and kinetic RNA folding simulations to engineer RNA-regulated genetic devices that control gene expression. Ribozyme and metabolite-controlled, aptazyme-regulated expression devices with quantitatively predictable functions were assembled from components characterized in vitro, in vivo, and in silico. The models and design strategy were verified by constructing 28 Escherichia coli expression devices that gave excellent quantitative agreement between the predicted and measured gene expression levels (r = 0.94). These technologies were applied to engineer RNA-regulated controls in metabolic pathways. More broadly, we provide a framework for studying RNA functions and illustrate the potential for the use of biochemical and biophysical modeling to develop biological design methods.
引用
收藏
页码:1716 / 1719
页数:4
相关论文
共 29 条
[1]   What is complexity? [J].
Adami, C .
BIOESSAYS, 2002, 24 (12) :1085-1094
[2]  
[Anonymous], 2008, GLOBAL SENSITIVITY A
[3]   RNA-based computation in live cells [J].
Benenson, Yaakov .
CURRENT OPINION IN BIOTECHNOLOGY, 2009, 20 (04) :471-478
[4]   Selecting RNA aptamers for synthetic biology: investigating magnesium dependence and predicting binding affinity [J].
Carothers, James M. ;
Goler, Jonathan A. ;
Kapoor, Yuvraaj ;
Lara, Lesley ;
Keasling, Jay D. .
NUCLEIC ACIDS RESEARCH, 2010, 38 (08) :2736-2747
[5]   Chemical synthesis using synthetic biology [J].
Carothers, James M. ;
Goler, Jonathan A. ;
Keasling, Jay D. .
CURRENT OPINION IN BIOTECHNOLOGY, 2009, 20 (04) :498-503
[6]   Design Principles for Ligand-Sensing, Conformation-Switching Ribozymes [J].
Chen, Xi ;
Ellington, Andrew D. .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (12)
[7]   The bacterial enzyme RppH triggers messenger RNA degradation by 5' pyrophosphate removal [J].
Deana, Atilio ;
Celesnik, Helena ;
Belasco, Joel G. .
NATURE, 2008, 451 (7176) :355-U14
[8]   4-Aminophenylalanine and 4-aminocyclohexylalanine derivatives as potent, selective, and orally bioavailable inhibitors of dipeptidyl peptidase IV [J].
Duffy, Joseph L. ;
Kirk, Brian A. ;
Wang, Liping ;
Eiermann, George J. ;
He, Huaibing ;
Leiting, Barbara ;
Lyons, Kathryn A. ;
Patel, Reshma A. ;
Patel, Sangita B. ;
Petrov, Alexsandr ;
Scapin, Giovanna ;
Wu, Joseph K. ;
Thornberry, Nancy A. ;
Weber, Ann E. .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2007, 17 (10) :2879-2885
[9]   Beyond energy minimization:: approaches to the kinetic folding of RNA [J].
Flamm, Christoph ;
Hofacker, Ivo L. .
MONATSHEFTE FUR CHEMIE, 2008, 139 (04) :447-457
[10]   A switch in time: Detailing the life of a riboswitch [J].
Garst, Andrew D. ;
Batey, Robert T. .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2009, 1789 (9-10) :584-591