Chemical synthesis using synthetic biology

被引:82
作者
Carothers, James M. [1 ,2 ,3 ]
Goler, Jonathan A. [1 ,2 ,3 ,4 ]
Keasling, Jay D. [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Berkeley Ctr Synthet Biol, Berkeley, CA 94720 USA
[3] Joint BioEnergy Inst, Emeryville, CA 95608 USA
[4] Univ Calif Berkeley, Synthet Biol Engn Res Ctr, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
RATIONAL DESIGN; EVOLUTION; OPTIMIZATION; PATHWAYS; ENZYMES; DNA;
D O I
10.1016/j.copbio.2009.08.001
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
An immense array of naturally occurring biological systems have evolved that convert simple substrates into the products that cells need for growth and persistence. Through the careful application of metabolic engineering and synthetic biology, this biotransformation potential can be harnessed to produce chemicals that address unmet clinical and industrial needs. Developing the capacity to utilize biology to perform chemistry is a matter of increasing control over both the function of synthetic biological systems and the engineering of those systems. Recent efforts have improved general techniques and yielded successes in the use of synthetic biology for the production of drugs, bulk chemicals, and fuels in microbial platform hosts. Synthetic promoter systems and novel RNA-based, or riboregulator, mechanisms give more control over gene expression. Improved methods for isolating, engineering, and evolving enzymes give more control over substrate and product specificity and better catalysis inside the cell. New computational tools and methods for high-throughput system assembly and analysis may lead to more rapid forward engineering. We highlight research that reduces reliance upon natural biological components and point to future work that may enable more rational design and assembly of synthetic biological systems for synthetic chemistry.
引用
收藏
页码:498 / 503
页数:6
相关论文
共 36 条
[1]   Functional metagenomics reveals diverse β-lactamases in a remote Alaskan soil [J].
Allen, Heather K. ;
Moe, Luke A. ;
Rodbumrer, Jitsupang ;
Gaarder, Andra ;
Handelsman, Jo .
ISME JOURNAL, 2009, 3 (02) :243-251
[2]   Robustness analysis and tuning of synthetic gene networks [J].
Batt, Gregory ;
Yordanov, Boyan ;
Weiss, Ron ;
Belta, Calin .
BIOINFORMATICS, 2007, 23 (18) :2415-2422
[3]   A syntactic model to design and verify synthetic genetic constructs derived from standard biological parts [J].
Cai, Yizhi ;
Hartnett, Brian ;
Gustafsson, Claes ;
Peccoud, Jean .
BIOINFORMATICS, 2007, 23 (20) :2760-2767
[4]   Refinement and standardization of synthetic biological parts and devices [J].
Canton, Barry ;
Labno, Anna ;
Endy, Drew .
NATURE BIOTECHNOLOGY, 2008, 26 (07) :787-793
[5]  
CAROTHERS JM, 2006, APTAMER HDB, P3
[6]   Engineering Escherichia coli for production of functionalized terpenoids using plant P450s [J].
Chang, Michelle C. Y. ;
Eachus, Rachel A. ;
Trieu, William ;
Ro, Dae-Kyun ;
Keasling, Jay D. .
NATURE CHEMICAL BIOLOGY, 2007, 3 (05) :274-277
[7]   Protein fabrication automation [J].
Cox, J. Colin ;
Lape, Janel ;
Sayed, Mahmood A. ;
Hellinga, Homme W. .
PROTEIN SCIENCE, 2007, 16 (03) :379-390
[8]   Programming gene expression with combinatorial promoters [J].
Cox, Robert Sidney, III ;
Surette, Michael G. ;
Elowitz, Michael B. .
MOLECULAR SYSTEMS BIOLOGY, 2007, 3 (1)
[9]  
Dietrich J., 2009, ACS CHEM BIOL
[10]   One pathway, many products [J].
Fischbach, Michael A. ;
Clardy, Jon .
NATURE CHEMICAL BIOLOGY, 2007, 3 (07) :353-355