Aging in models of nonlinear diffusion

被引:33
作者
Stariolo, DA [1 ]
机构
[1] IST NAZL FIS NUCL,SEZ ROMA 1,I-00185 ROME,ITALY
来源
PHYSICAL REVIEW E | 1997年 / 55卷 / 04期
关键词
D O I
10.1103/PhysRevE.55.4806
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show that for a class of problems described by the nonlinear diffusion equation partial derivative/partial derivative t phi(mu) = D partial derivative(2)/partial derivative x(2) phi(nu) an exact calculation of the two time autocorrelation function gives C(t,t') = f(t-t')g(t') (t>t') exhibiting normal and anomalous diffusions, as well as aging effects, depending on the values of mu and nu. We also discuss the form in which the Fluctuation-dissipation theorem is violated in this type of systems. Finally, we argue that in this kind of model, aging may be a consequence of the nonconservation of the ''total mass''.
引用
收藏
页码:4806 / 4809
页数:4
相关论文
共 25 条
[11]   GENERALIZED STATISTICAL-MECHANICS - CONNECTION WITH THERMODYNAMICS [J].
CURADO, EMF ;
TSALLIS, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (02) :L69-L72
[12]  
CURADO EMF, 1992, J PHYS A-MATH GEN, V25, P1019, DOI 10.1088/0305-4470/25/4/038
[13]  
Goldenfeld N., 2018, Lectures on phase transitions and the renormalization group
[14]   ON TOY AGING [J].
MARINARI, E ;
PARISI, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (22) :L1149-L1156
[15]   Non-extensive statistical mechanics and generalized Fokker-Planck equation [J].
Plastino, AR ;
Plastino, A .
PHYSICA A, 1995, 222 (1-4) :347-354
[16]  
SPOHN H, 1993, J PHYS I, V3, P69, DOI 10.1051/jp1:1993117
[17]  
STRUIK LCE, 1978, PHYSICAL AGING AMORP
[18]   POSSIBLE GENERALIZATION OF BOLTZMANN-GIBBS STATISTICS [J].
TSALLIS, C .
JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (1-2) :479-487
[19]   Anomalous diffusion in the presence of external forces: Exact time-dependent solutions and their thermostatistical basis [J].
Tsallis, C ;
Bukman, DJ .
PHYSICAL REVIEW E, 1996, 54 (03) :R2197-R2200
[20]   STATISTICAL-MECHANICAL FOUNDATION OF THE UBIQUITY OF LEVY DISTRIBUTIONS IN NATURE [J].
TSALLIS, C ;
LEVY, SVF ;
SOUZA, AMC ;
MAYNARD, R .
PHYSICAL REVIEW LETTERS, 1995, 75 (20) :3589-3593