N-alkylated chitosan as a potential nonviral vector for gene transfection

被引:153
作者
Liu, WG
Zhang, X
Sun, SJ
Sun, GJ
De Yao, K [1 ]
Liang, DC
Guo, G
Zhang, JY
机构
[1] Tianjin Univ, Res Inst Polymer Mat, Tianjin 300072, Peoples R China
[2] Tianjin Med Univ, Tianjin 300070, Peoples R China
关键词
D O I
10.1021/bc020051g
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Alkylated chitosans (ACSs) were prepared by modifying chitosan (CS) with alkyl bromide. The self-aggregation of ACSs in acetic acid solution was characterized by fluorescence spectroscopy and dynamic light scattering method. The results indicate that introducing alkyl side chains leads to the self-aggregation of ACSs, and CS with a 99% deacetylation degree shows no aggregation due to the electrostatic repulsion. The electrophoresis experiment demonstrates that the complex between CS and DNA was formed at a charge ratio (+/-) of 1/1; ACS/DNA complexes were formed at a lower charge ratio (+/-) of 1/4. A small amount of alkylated chitosans play the same shielding role as chitosan in protecting DNA from DNase hydrolysis. Differential scanning calorimetry (DSC) and atomic force microscopy (AFM) were employed separately to investigate the thermodynamic behavior of dipalmitoylsn-glycero-3-phosphocholine (DPPC)/CS and DPPC/ACS mixtures and the variation in topological structure of DPPC membrane induced by CS and ACS. It is shown that CS and ACS can cause the fusion of DPPC multilamellar vesicles as well as membrane destabilization. In contrast, the perturbation effect induced by ACS is more evident due to the hydrophobic interaction. CS and ACS were used to transfer plasmid-encoding CAT into C2C12 cell lines. Upon elongating the alkyl side chain, the transfection efficiency is increased and levels off after the number of carbons in the side chain exceeds 8. It is proposed that the higher transfection efficiency of ACS is attributed to the increasing entry into cells facilitated by hydrophobic interactions and easier unpacking of DNA from ACS carriers due to the weakening of electrostatic attractions between DNA and ACS.
引用
收藏
页码:782 / 789
页数:8
相关论文
共 36 条
[1]  
Bae HS, 1997, J POLYM SCI POL CHEM, V35, P3755, DOI 10.1002/(SICI)1099-0518(199712)35:17<3755::AID-POLA15>3.0.CO
[2]  
2-C
[3]   Chitosans for gene delivery [J].
Borchard, G .
ADVANCED DRUG DELIVERY REVIEWS, 2001, 52 (02) :145-150
[4]   Chitosan-induced perturbation of dipalmitoyl-sn-glycero-3-phosphocholine membrane bilayer [J].
Chan, V ;
Mao, HQ ;
Leong, KW .
LANGMUIR, 2001, 17 (12) :3749-3756
[5]   Chitosan-based vector/DNA complexes for gene delivery: Biophysical characteristics and transfection ability [J].
Erbacher, P ;
Zou, SM ;
Bettinger, T ;
Steffan, AM ;
Remy, JS .
PHARMACEUTICAL RESEARCH, 1998, 15 (09) :1332-1339
[6]   Interactions of phospholipid bilayer with chitosan: effect of molecular weight and pH [J].
Fang, N ;
Chan, V ;
Mao, HQ ;
Leong, KW .
BIOMACROMOLECULES, 2001, 2 (04) :1161-1168
[7]   Chitosan as a novel nasal delivery system for vaccines [J].
Illum, L ;
Jabbal-Gill, I ;
Hinchcliffe, M ;
Fisher, AN ;
Davis, SS .
ADVANCED DRUG DELIVERY REVIEWS, 2001, 51 (1-3) :81-96
[8]   Mechanism of cell transfection with plasmid/chitosan complexes [J].
Ishii, T ;
Okahata, Y ;
Sato, T .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2001, 1514 (01) :51-64
[9]   Polysaccharide colloidal particles as delivery systems for macromolecules [J].
Janes, KA ;
Calvo, P ;
Alonso, MJ .
ADVANCED DRUG DELIVERY REVIEWS, 2001, 47 (01) :83-97
[10]   DNA COMPLEXES WITH POLYCATIONS FOR THE DELIVERY OF GENETIC MATERIAL INTO CELLS [J].
KABANOV, AV ;
KABANOV, VA .
BIOCONJUGATE CHEMISTRY, 1995, 6 (01) :7-20