Helical polyacetylene heavily doped with iodine: Magnetotransport

被引:25
作者
Suh, DS [1 ]
Kim, TJ
Aleshin, AN
Park, YW
Piao, G
Akagi, K
Shirakawa, H
Qualls, JS
Han, SY
Brooks, JS
机构
[1] Seoul Natl Univ, Sch Phys, Seoul 151747, South Korea
[2] Seoul Natl Univ, Condensed Matter Res Inst, Seoul 151747, South Korea
[3] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
[4] Univ Tsukuba, Inst Mat Sci, Tsukuba, Ibaraki 3058573, Japan
[5] Univ Tsukuba, Ctr Tsukuba Adv Res Alliance, Tsukuba, Ibaraki 3058573, Japan
[6] Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA
[7] Florida State Univ, NHMFL, Tallahassee, FL 32310 USA
关键词
D O I
10.1063/1.1358837
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The magnetoconductivity of two kinds of iodine doped helical polyacetylene, R- and S-polyacetylene, were investigated to understand the effect of the intrafibril and the interfibrillar interaction in the polyacetylene system. The zero-field resistivity ratio, rho (r)=rho (1.2 K)/rho (300 K), is comparable to that of stretch-oriented high-density polyacetylene film, which indicates the partial alignment of chains inside a polymer fiber. At low magnetic fields, the small negative component of magnetoconductivity (positive magnetoresistance) was observed and its magnitude increases as the rho (r) value increases. In the high field region, the magnetoconductivity is positive and it clearly shows the linear dependence on the magnetic field up to H=30 T. The linear field dependence of magnetoconductivity is different from what is expected in the three-dimensional localization-interaction picture. For the same rho (r) value samples, the magnitude of negative magnetoconductivity of S-polyacetylene is much bigger than that of R-polyacetylene, which could be attributed to the difference in the degree of helicity determining the strength of interfibrillar interaction. (C) 2001 American Institute of Physics.
引用
收藏
页码:7222 / 7227
页数:6
相关论文
共 29 条
[1]   Electronic transport in the metallic state of oriented poly(p-phenylenevinylene) [J].
Ahlskog, M ;
Reghu, M ;
Heeger, AJ ;
Noguchi, T ;
Ohnishi, T .
PHYSICAL REVIEW B, 1996, 53 (23) :15529-15537
[2]   Helical polyacetylene synthesized with a chiral nematic reaction field [J].
Akagi, K ;
Piao, G ;
Kaneko, S ;
Sakamaki, K ;
Shirakawa, H ;
Kyotani, M .
SCIENCE, 1998, 282 (5394) :1683-1686
[3]  
AKAGI K, 1989, SYNTHETIC MET, V28, P1
[4]   UNIVERSAL SCALING OF THE MAGNETOCONDUCTANCE OF METALLIC SI-B [J].
BOGDANOVICH, S ;
DAI, PH ;
SARACHIK, MP ;
DOBROSAVLJEVIC, V .
PHYSICAL REVIEW LETTERS, 1995, 74 (13) :2543-2546
[5]  
CHIEN JCW, 1984, POLYACETYLENE
[6]   Magnetoresistance of the metallic polyacetylene [J].
Choi, ES ;
Kim, GT ;
Suh, DS ;
Kim, DC ;
Park, JG ;
Park, YW .
SYNTHETIC METALS, 1999, 100 (01) :3-12
[7]   MAGNETORESISTANCE OF IODINE-DOPED POLYACETYLENE AT LOW-TEMPERATURES [J].
ETTLINGER, E ;
SCHOEPE, W ;
MONKENBUSCH, M ;
WIENERS, G .
SOLID STATE COMMUNICATIONS, 1984, 49 (02) :107-110
[8]  
FIRSOV YA, 1985, LOCALIZATION METAL I
[9]   Low-temperature metallic conductance in PF6-doped polypyrrole [J].
Gilani, TH ;
Ishiguro, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (03) :727-737
[10]   ELECTRICAL-CONDUCTIVITY OF HEAVILY DOPED POLYACETYLENE AT ULTRALOW TEMPERATURES [J].
GOULD, CM ;
BATES, DM ;
BOZLER, HM ;
HEEGER, AJ ;
DRUY, MA ;
MACDIARMID, AG .
PHYSICAL REVIEW B, 1981, 23 (12) :6820-6823