The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS)

被引:216
作者
Dinar, E.
Riziq, A. Abo
Spindler, C.
Erlick, C.
Kiss, G.
Rudich, Y. [1 ]
机构
[1] Weizmann Inst Sci, Dept Environm Sci, IL-76100 Rehovot, Israel
[2] Hebrew Univ Jerusalem, Dept Atmospher Sci, IL-91904 Jerusalem, Israel
[3] Univ Pannonia, Hungarian Acad Sci, Air Chem Grp, H-8200 Veszprem, Hungary
来源
FARADAY DISCUSSIONS | 2008年 / 137卷
关键词
D O I
10.1039/b703111d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atmospheric aerosols absorb and reflect solar radiation causing surface cooling and heating of the atmosphere. The interaction between aerosols and radiation depends on their complex index of refraction, which is related to the particles' chemical composition. The contribution of light absorbing organic compounds, such as HUmic- LIke Substances ( HULIS) to aerosol scattering and absorption is among the largest uncertainties in assessing the direct effect of aerosols on climate. Using a Cavity Ring Down Aerosol Spectrometer ( CRD- AS), the complex index of refraction of aerosols containing HULIS extracted from pollution, smoke, and rural continental aerosols, and molecular weight- fractionated fulvic acid was measured at 390 nm and 532 nm. The imaginary part of the refractive index ( absorption) substantially increases towards the UV range with increasing molecular weight and aromaticity. At both wavelengths, HULIS extracted from pollution and smoke particles absorb more than HULIS from the rural aerosol. Sensitivity calculations for a pollution- type aerosol containing ammonium sulfate, organic carbon ( HULIS), and soot suggests that accounting for absorption by HULIS leads in most cases to a significant decrease in the single scattering albedo and to a signi. cant increase in aerosol radiative forcing effciency, towards more atmospheric absorption and heating. This indicates that HULIS in biomass smoke and pollution aerosols, in addition to black carbon, can contribute significantly to light absorption in the ultraviolet and visible spectral regions.
引用
收藏
页码:279 / 295
页数:17
相关论文
共 56 条
[1]   The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations [J].
Anderson, JL ;
Balaji, V ;
Broccoli, AJ ;
Cooke, WF ;
Delworth, TL ;
Dixon, KW ;
Donner, LJ ;
Dunne, KA ;
Freidenreich, SM ;
Garner, ST ;
Gudgel, RG ;
Gordon, CT ;
Held, IM ;
Hemler, RS ;
Horowitz, LW ;
Klein, SA ;
Knutson, TR ;
Kushner, PJ ;
Langenhost, AR ;
Lau, NC ;
Liang, Z ;
Malyshev, SL ;
Milly, PCD ;
Nath, MJ ;
Ploshay, JJ ;
Ramaswamy, V ;
Schwarzkopf, MD ;
Shevliakova, E ;
Sirutis, JJ ;
Soden, BJ ;
Stern, WF ;
Thompson, LA ;
Wilson, RJ ;
Wittenberg, AT ;
Wyman, BL .
JOURNAL OF CLIMATE, 2004, 17 (24) :4641-4673
[2]   Aerosol backscatter fraction and single scattering albedo: Measured values and uncertainties at a coastal station in the Pacific Northwest [J].
Anderson, TL ;
Covert, DS ;
Wheeler, JD ;
Harris, JM ;
Perry, KD ;
Trost, BE ;
Jaffe, DJ ;
Ogren, JA .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D21) :26793-26807
[3]   Black carbon or brown carbon?: The nature of light-absorbing carbonaceous aerosols [J].
Andreae, M. O. ;
Gelencser, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :3131-3148
[4]   Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling [J].
Bates, T. S. ;
Anderson, T. L. ;
Baynard, T. ;
Bond, T. ;
Boucher, O. ;
Carmichael, G. ;
Clarke, A. ;
Erlick, C. ;
Guo, H. ;
Horowitz, L. ;
Howell, S. ;
Kulkarni, S. ;
Maring, H. ;
McComiskey, A. ;
Middlebrook, A. ;
Noone, K. ;
O'Dowd, C. D. ;
Ogren, J. ;
Penner, J. ;
Quinn, P. K. ;
Ravishankara, A. R. ;
Savoie, D. L. ;
Schwartz, S. E. ;
Shinozuka, Y. ;
Tang, Y. ;
Weber, R. J. ;
Wu, Y. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :1657-1732
[5]  
BOHERN CF, 1983, ABSORPTION SCATTEERI
[6]   Light absorption by carbonaceous particles: An investigative review [J].
Bond, TC ;
Bergstrom, RW .
AEROSOL SCIENCE AND TECHNOLOGY, 2006, 40 (01) :27-67
[7]   Simultaneous in situ detection of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy [J].
Brown, SS ;
Stark, H ;
Ciciora, SJ ;
McLaughlin, RJ ;
Ravishankara, AR .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2002, 73 (09) :3291-3301
[8]   Hygroscopic properties of two model humic-like substances and their mixtures with inorganics of atmospheric importance [J].
Chan, MN ;
Chan, CK .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (22) :5109-5115
[9]   MOLECULAR-WEIGHT, POLYDISPERSITY, AND SPECTROSCOPIC PROPERTIES OF AQUATIC HUMIC SUBSTANCES [J].
CHIN, YP ;
AIKEN, G ;
OLOUGHLIN, E .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1994, 28 (11) :1853-1858
[10]   Construction of a 1° x 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model [J].
Cooke, WF ;
Liousse, C ;
Cachier, H ;
Feichter, J .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D18) :22137-22162