Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils

被引:368
作者
McGrath, SP [1 ]
Zhao, FJ [1 ]
Lombi, E [1 ]
机构
[1] IACR Rothamsted, Agr & Environm Div, Harpenden AL5 2JQ, Herts, England
关键词
cadmium; brassicas; hyperaccumulators; nickle; rhizosphere; zinc;
D O I
10.1023/A:1010358708525
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
This paper reviews the recent advances in understanding of metal removal from contaminated soils, using either hyperaccumulator plants, or high biomass crop species after soil treatment with chelating compounds. Progress has been made at the physiology and molecular level regarding Zn and Ni uptake and translocation in some hyperaccumulators. It is also known that natural hyperaccumulators do not use rhizosphere acidification to enhance their metal uptake. Recently, it has been found that some natural hyperaccumulators proliferate their roots positively in patches of high metal availability. In contrast, non-accumulators actively avoid these areas, and this is one of the mechanisms by which hyperaccumulators absorb more metals when grown in the same soil. However, there are few studies on the exudation and persistence of natural chelating compounds by these plants. It is thought that rhizosphere microorganisms are not important for the hyperaccumulation of metals from soil. Applications of chelates have been shown to induce large accumulations of metals like Pb, U and Au in the shoots of non-hyperaccumulators, by increasing metal solubility and root to shoot translocation. The efficiency of metal uptake does vary with soil properties, and a full understanding of the relative importance of mass flow and diffusion in the presence and absence of artificial chelates is not available. To successfully manipulate and optimise future phytoextraction technologies, it is argued that a fully combined understanding of soil supply and plant uptake is needed.
引用
收藏
页码:207 / 214
页数:8
相关论文
共 56 条
[11]  
Brooks RR, 1998, PLANTS THAT HYPERACCUMULATE HEAVY METALS: THEIR ROLE IN PHYTOREMEDIATION, MICROBIOLOGY, ARCHAEOLOGY, MINERAL EXPLORATION AND PHYTOMINING, P55
[12]   PHYTOREMEDIATION POTENTIAL OF THLASPI-CAERULESCENS AND BLADDER CAMPION FOR ZINC-CONTAMINATED AND CADMIUM-CONTAMINATED SOIL [J].
BROWN, SL ;
CHANEY, RL ;
ANGLE, JS ;
BAKER, AJM .
JOURNAL OF ENVIRONMENTAL QUALITY, 1994, 23 (06) :1151-1157
[13]   ZINC AND CADMIUM UPTAKE BY HYPERACCUMULATOR THLASPI-CAERULESCENS GROWN IN NUTRIENT SOLUTION [J].
BROWN, SL ;
CHANEY, RL ;
ANGLE, JS ;
BAKER, AJM .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1995, 59 (01) :125-133
[14]  
Chaney R. L., 1983, Land treatment of hazardous wastes, P50
[15]  
Cunningham SD, 2000, PHYTOREMEDIATION OF CONTAMINATED SOIL AND WATER, P359
[16]   Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard [J].
de Souza, MP ;
Chu, D ;
Zhao, M ;
Zayed, AM ;
Ruzin, SE ;
Schichnes, D ;
Terry, N .
PLANT PHYSIOLOGY, 1999, 119 (02) :565-573
[17]   Toxicity of zinc and copper to Brassica species: Implications for phytoremediation [J].
Ebbs, SD ;
Kochian, LV .
JOURNAL OF ENVIRONMENTAL QUALITY, 1997, 26 (03) :776-781
[18]   Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea) [J].
Ebbs, SD ;
Kochian, LV .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1998, 32 (06) :802-806
[19]   EDTA and Pb-EDTA accumulation in Brassica juncea grown in Pb-amended soil [J].
Epstein, AL ;
Gussman, CD ;
Blaylock, MJ ;
Yermiyahu, U ;
Huang, JW ;
Kapulnik, Y ;
Orser, CS .
PLANT AND SOIL, 1999, 208 (01) :87-94
[20]  
European Topic Centre Soil (ETCS), 1998, TOP REP CONT SIT