Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics

被引:377
作者
Baerenfaller, Katja [1 ,2 ]
Grossmann, Jonas [1 ,2 ,3 ]
Grobei, Monica A. [2 ,4 ]
Hull, Roger [5 ]
Hirsch-Hoffmann, Matthias [1 ]
Yalovsky, Shaul [6 ]
Zimmermann, Philip [1 ]
Grossniklaus, Ueli [2 ,4 ]
Gruissem, Wilhelm [1 ,2 ,3 ]
Baginsky, Sacha [1 ,2 ]
机构
[1] ETH, Swiss Fed Inst Technol, Inst Plant Sci, CH-8092 Zurich, Switzerland
[2] Univ Zurich, Ctr Model Organism Proteomes, CH-8057 Zurich, Switzerland
[3] Funct Genom Ctr Zurich, CH-8057 Zurich, Switzerland
[4] Univ Zurich, Inst Plant Biol, CH-8008 Zurich, Switzerland
[5] Univ Manchester, Fac Life Sci, Manchester M13 9PL, Lancs, England
[6] Tel Aviv Univ, Dept Plant Sci, IL-69978 Tel Aviv, Israel
关键词
D O I
10.1126/science.1157956
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We have assembled a proteome map for Arabidopsis thaliana from high-density, organ-specific proteome catalogs that we generated for different organs, developmental stages, and undifferentiated cultured cells. We matched 86,456 unique peptides to 13,029 proteins and provide expression evidence for 57 gene models that are not represented in the TAIR7 protein database. Analysis of the proteome identified organ-specific biomarkers and allowed us to compile an organ-specific set of proteotypic peptides for 4105 proteins to facilitate targeted quantitative proteomics surveys. Quantitative information for the identified proteins was used to establish correlations between transcript and protein accumulation in different plant organs. The Arabidopsis proteome map provides information about genome activity and proteome assembly and is available as a resource for plant systems biology.
引用
收藏
页码:938 / 941
页数:4
相关论文
共 27 条
  • [1] Improved scoring of functional groups from gene expression data by decorrelating GO graph structure
    Alexa, Adrian
    Rahnenfuehrer, Joerg
    Lengauer, Thomas
    [J]. BIOINFORMATICS, 2006, 22 (13) : 1600 - 1607
  • [2] Ion suppression in mass spectrometry
    Annesley, TM
    [J]. CLINICAL CHEMISTRY, 2003, 49 (07) : 1041 - 1044
  • [3] Analysis of shotgun proteomics and RNA profiling data from Arabidopsis thaliana chloroplasts
    Baginsky, S
    Kleffmann, T
    von Zychlinski, A
    Gruissem, W
    [J]. JOURNAL OF PROTEOME RESEARCH, 2005, 4 (02) : 637 - 640
  • [4] Functional annotation of the Arabidopsis genome using controlled vocabularies
    Berardini, TZ
    Mundodi, S
    Reiser, L
    Huala, E
    Garcia-Hernandez, M
    Zhang, PF
    Mueller, LA
    Yoon, J
    Doyle, A
    Lander, G
    Moseyko, N
    Yoo, D
    Xu, I
    Zoeckler, B
    Montoya, M
    Miller, N
    Weems, D
    Rhee, SY
    [J]. PLANT PHYSIOLOGY, 2004, 135 (02) : 745 - 755
  • [5] A high-quality catalog of the Drosophila melanogaster proteome
    Brunner, Erich
    Ahrens, Christian H.
    Mohanty, Sonali
    Baetschmann, Hansruedi
    Loevenich, Sandra
    Potthast, Frank
    Deutsch, Eric W.
    Panse, Christian
    de Lichtenberg, Ulrik
    Rinner, Oliver
    Lee, Hookeun
    Pedrioli, Patrick G. A.
    Malmstrom, Johan
    Koehler, Katja
    Schrimpf, Sabine
    Krijgsveld, Jeroen
    Kregenow, Floyd
    Heck, Albert J. R.
    Hafen, Ernst
    Schlapbach, Ralph
    Aebersold, Ruedi
    [J]. NATURE BIOTECHNOLOGY, 2007, 25 (05) : 576 - 583
  • [6] Finding the genes in genomic DNA
    Burge, CB
    Karlin, S
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 1998, 8 (03) : 346 - 354
  • [7] Is proteomics the new genomics?
    Cox, Juergen
    Mann, Matthias
    [J]. CELL, 2007, 130 (03) : 395 - 398
  • [8] Desiere F, 2006, NUCLEIC ACIDS RES, V34, pD655, DOI [10.1093/nar/gkj040, 10.1007/978-1-60761-444-9_19]
  • [9] Improving the success rate of proteome analysis by modeling protein-abundance distributions and experimental designs
    Eriksson, Jan
    Fenyo, David
    [J]. NATURE BIOTECHNOLOGY, 2007, 25 (06) : 651 - 655
  • [10] Integrating alternative splicing detection into gene prediction
    Foissac, S
    Schiex, T
    [J]. BMC BIOINFORMATICS, 2005, 6 (1)