Stochastic analysis of the fractional Brownian motion

被引:540
作者
Decreusefond, L [1 ]
Üstünel, AS [1 ]
机构
[1] Ecole Natl Super Telecommun, F-75634 Paris, France
关键词
fractional Brownian motion; stochastic calculus of variations; Ito formula; Girsanov formula;
D O I
10.1023/A:1008634027843
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Since the fractional Brownian motion is not a semi-martingale, the usual Ito calculus cannot be used to define a full stochastic calculus. However, in this work, we obtain the Ito formula, the Ito-Clark representation formula and the Girsanov theorem for the functionals of a fractional Brownian motion using the stochastic calculus of variations.
引用
收藏
页码:177 / 214
页数:38
相关论文
共 17 条
[1]  
[Anonymous], 1988, SPECIAL FUNCTIONS MA, DOI DOI 10.1007/978-1-4757-1595-8
[2]  
[Anonymous], 1995, LECT NOTES MATH
[3]   On the law of the iterated logarithm for Gaussian processes [J].
Arcones, MA .
JOURNAL OF THEORETICAL PROBABILITY, 1995, 8 (04) :877-903
[4]   SIGNAL-DETECTION IN FRACTIONAL GAUSSIAN-NOISE [J].
BARTON, RJ ;
POOR, HV .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (05) :943-959
[5]   AN INTEGRAL FOR BOUNDED ALPHA-VARIATION PROCESSES [J].
BERTOIN, J .
ANNALS OF PROBABILITY, 1989, 17 (04) :1521-1535
[6]  
BOULEAU N, 1992, DIRICHLET FORMS ANAL
[7]  
Coelho R., 1995, 6 IFIP WORKSH PERF M
[8]  
FEYEL D, 1996, FRACTIONAL INTEGRALS
[9]  
FOLLMER H, 1980, SEMIN PROBABILITY, P143
[10]   ON THE SELF-SIMILAR NATURE OF ETHERNET TRAFFIC (EXTENDED VERSION) [J].
LELAND, WE ;
TAQQU, MS ;
WILLINGER, W ;
WILSON, DV .
IEEE-ACM TRANSACTIONS ON NETWORKING, 1994, 2 (01) :1-15