Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder

被引:670
作者
Martins Ferreira, E. H. [1 ]
Moutinho, Marcus V. O. [2 ]
Stavale, F. [1 ]
Lucchese, M. M. [1 ,3 ]
Capaz, Rodrigo B. [1 ,2 ]
Achete, C. A. [1 ,4 ]
Jorio, A. [1 ,5 ]
机构
[1] Inst Nacl Metrol Normalizacao & Qualidade Ind INM, Div Mat Metrol, BR-25250020 Duque De Caxias, RJ, Brazil
[2] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil
[3] Univ Fed Pampa, Ctr Ciencias Exatas & Tecnol, Bage, RS, Brazil
[4] Univ Fed Rio de Janeiro, PEMM, BR-21945970 Rio De Janeiro, Brazil
[5] Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil
关键词
GRAPHITE; SPECTROSCOPY; SCATTERING; NANOTUBES; ELECTRON; DEFECTS; FILMS;
D O I
10.1103/PhysRevB.82.125429
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report on the micro-Raman spectroscopy of monolayer, bilayer, trilayer, and many layers of graphene (graphite) bombarded by low-energy argon ions with different doses. The evolution of peak frequencies, intensities, linewidths, and areas of the main Raman bands of graphene is analyzed as function of the distance between defects and number of layers. We describe the disorder-induced frequency shifts and the increase in the linewidth of the Raman bands by means of a spatial-correlation model. Also, the evolution of the relative areas A(D)/A(G), A(D')/A(G), and A(G')/A(G) is described by a phenomenological model. The present results can be used to fully characterize disorder in graphene systems.
引用
收藏
页数:9
相关论文
共 38 条
[1]   Effect of disorder on transport in graphene [J].
Aleiner, I. L. ;
Efetov, K. B. .
PHYSICAL REVIEW LETTERS, 2006, 97 (23)
[2]   Low-energy theory of disordered graphene [J].
Altland, Alexander .
PHYSICAL REVIEW LETTERS, 2006, 97 (23)
[3]  
[Anonymous], 1992, SPRINGER SERIES MAT
[4]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[5]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[6]   Phonon anharmonicities in graphite and graphene [J].
Bonini, Nicola ;
Lazzeri, Michele ;
Marzari, Nicola ;
Mauri, Francesco .
PHYSICAL REVIEW LETTERS, 2007, 99 (17)
[7]   Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots [J].
Bunch, JS ;
Yaish, Y ;
Brink, M ;
Bolotin, K ;
McEuen, PL .
NANO LETTERS, 2005, 5 (02) :287-290
[8]   Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size [J].
Cancado, L. G. ;
Jorio, A. ;
Pimenta, M. A. .
PHYSICAL REVIEW B, 2007, 76 (06)
[9]   Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite -: art. no. 035415 [J].
Cançado, LG ;
Pimenta, MA ;
Saito, R ;
Jorio, A ;
Ladeira, LO ;
Grueneis, A ;
Souza, AG ;
Dresselhaus, G ;
Dresselhaus, MS .
PHYSICAL REVIEW B, 2002, 66 (03) :354151-354155
[10]   Raman Spectroscopy of Graphene Edges [J].
Casiraghi, C. ;
Hartschuh, A. ;
Qian, H. ;
Piscanec, S. ;
Georgi, C. ;
Fasoli, A. ;
Novoselov, K. S. ;
Basko, D. M. ;
Ferrari, A. C. .
NANO LETTERS, 2009, 9 (04) :1433-1441